Skip to main content
Log in

A coupled discrete element-finite difference model of selective laser sintering

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Selective laser sintering (SLS) is an additive manufacturing technology whereby one can 3D print parts out of a powdered material. However, in order to produce defect free parts of sufficient strength, the process parameters (laser power, scan speed, powder layer thickness, etc.) must be carefully optimized depending on material, part geometry, and desired final part characteristics. Computational methods are very useful in the quick optimization of such parameters without the need to run numerous costly experiments. Most published models of this process involve continuum-based techniques, which require the homogenization of the powder bed and thus do not capture the stochastic nature of this process. Thus, the aim of this research is to produce a reduced order computational model of the SLS process which combines the essential physics with fast computation times. In this work the authors propose a coupled discrete element-finite difference model of this process. The powder particles are modeled as discrete, thermally and mechanically interacting spheres. The solid, underneath substrate is modeled via the finite difference method. The model is validated against experimental results in the literature and three-dimensional simulations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The powder bed density is calculated by adding the volume of all portions of all particles located within a 30 \(\upmu \)m layer from the bottom substrate and then dividing by the volume of this layer (the cross section of the layer is 1000 \(\upmu \)m \(\times \) 500 \(\upmu \)m and height is 30 \(\upmu \)m).

References

  1. Mechanical and physical properties of the austenitic chromium–nickel stainless steels at elevated temperatures 3rd edn. The International Nickel Company Inc., New York (1968)

  2. Adams, G., Nosonovsky, M.: Contact modeling—forces. Tribol. Int. 33, 431–442 (2000)

    Article  Google Scholar 

  3. Antony, K., Arivazhagan, N., Senthilkumaran, K.: Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J. Manuf. Process. 16(3), 345–355 (2014)

    Article  Google Scholar 

  4. Bonacina, C., Comini, G., Fasano, A., Primicerio, M.: Numerical solution of phase-change problems. Int. J. Heat Mass Transf. 16(10), 1825–1832 (1973)

    Article  Google Scholar 

  5. Campello, E.M., Zohdi, T.I.: A computational framework for simulation of the delivery of substances into cells. Int. J. Numer. Methods Biomed. Eng. 30, 1132–1152 (2014)

  6. Dai, D., Gu, D.: Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: Simulation and experiments. Mater. Des. 55, 482–491 (2014)

    Article  Google Scholar 

  7. Dong, L., Makradi, A., Ahzi, S., Remond, Y.: Three-dimensional transient finite element analysis of the selective laser sintering process. J. Mater. Process. Technol. 209(2), 700–706 (2009)

    Article  Google Scholar 

  8. Ebert, R., Ullmann, F., Hildebrandt, D., Schille, J., Hartwig, L., Kloetzer, S., Streek, A., Exner, H.: Laser processing of tungsten powder with femtosecond laser radiation. J. Laser Micro Nanoeng. 7(1), 38–43 (2012)

    Article  Google Scholar 

  9. Fischer, P., Locher, M., Romano, V., Weber, H., Kolossov, S., Glardon, R.: Temperature measurements during selective laser sintering of titanium powder. Int. J. Mach. Tools Manuf. 44(12–13), 1293–1296 (2004)

    Article  Google Scholar 

  10. Galindo-Torres, S.: A coupled discrete element lattice Boltzmann method for the simulation of fluid solid interaction with particles of general shapes. Comput. Methods Appl. Mech. Eng. 265, 107–119 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ganeriwala, R., Zohdi, T.I.: Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Proc. CIRP 14(0), 299–304 (2014). (6th CIRP international conference on high performance cutting, HPC2014)

    Article  Google Scholar 

  12. Gusarov, A., Kruth, J.P.: Modelling of radiation transfer in metallic powders at laser treatment. Int. J. Heat Mass Transf. 48(16), 3423–3434 (2005)

    Article  MATH  Google Scholar 

  13. Gusarov, A.V., Yadroitsev, I., Bertrand, P., Smurov, I.: Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J. Heat Transf. 131(7), 072,101 (2009)

    Article  Google Scholar 

  14. Hecht, J.: Understanding Lasers. Wiley, Hoboken (2008)

    Book  Google Scholar 

  15. Hodge, N., Ferencz, R., Solberg, J.: Implementation of a thermomechanical model for the simulation of selective laser melting. Comput. Mech. 54, 33–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  17. Khairallah, S.A., Anderson, A.: Mesoscopic simulation model of selective laser melting of stainless steel powder. J. Mater. Process. Technol. 214(11), 2627–2636 (2014)

    Article  Google Scholar 

  18. Kolossov, S., Boillat, E., Glardon, R., Fischer, P., Locher, M.: 3D FE simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44(2–3), 117–123 (2004)

    Article  Google Scholar 

  19. Körner, C., Attar, E., Heinl, P.: Mesoscopic simulation of selective beam melting processes. J. Mater. Process. Technol. 211(6), 978–987 (2011)

    Article  Google Scholar 

  20. Körner, C., Bauereiß, A., Attar, E.: Fundamental consolidation mechanisms during selective beam melting of powders. Modell. Simul. Mater. Sci. Eng. 21(8), 085,011 (2013)

    Article  Google Scholar 

  21. Kruth, J.P., Levy, G., Klocke, F., Childs, T.: Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56(2), 730–759 (2007)

    Article  Google Scholar 

  22. Kumar, S.: Comprehensive Materials Processing, vol. 10. Elsevier, Amsterdam (2014)

    Google Scholar 

  23. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Book  MATH  Google Scholar 

  24. Limmaneevichitr, C., Kou, S.: Experiments to simulate effect of Marangoni convection on weld pool shape. Weld. J. 79, 231s–237s (2000)

    Google Scholar 

  25. Maeda, K., Childs, T.: Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. J. Mater. Process. Technol. 149(1–3), 609–615 (2004)

    Article  Google Scholar 

  26. Matsumoto, M., Shiomi, M., Osakada, K., Abe, F.: Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int. J. Mach. Tools Manuf. 42(1), 61–67 (2002)

  27. Muhieddine, M., Canot, E., March, R.: Various approaches for solving problems in heat conduction with phase change. Int. J. Finite Vol. 6, 66–85 (2009)

  28. Munson, B., Young, D., Okiishi, T.: Fundamentals of Fluid Mechanics. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  29. Nelson, J., Xue, S., Barlow, J.W., Beaman, J.J., Beaman, J., Marcus, H.L., Bourell, D.: Model of the selective laser sintering of bisphenol-A polycarbonate. Ind. Eng. Chem. Res. 32, 2305–2317 (1993)

    Article  Google Scholar 

  30. Perkins, E.D., Williams, J.R.: Generalized spatial binning of bodies of different sizes. In: Cook, B.K., Jensen, R.P. (eds.) Discrete Element Methods: Numerical Modeling of Discontinua, pp. 52–55. ASCE, Reston (2002)

    Chapter  Google Scholar 

  31. Schmidt, M., Pohle, D., Rechtenwald, T.: Selective laser sintering of PEEK. CIRP Ann. Manuf. Technol. 56(1), 205–208 (2007)

    Article  Google Scholar 

  32. Shifeng, W., Shuai, L., Qingsong, W., Yan, C., Sheng, Z., Yusheng, S.: Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Technol. 214, 2660–2667 (2014)

    Article  Google Scholar 

  33. Simchi, A.: Direct laser sintering of metal powders: mechanism, kinetics and microstructural features. Mater. Sci. Eng. A 428(1–2), 148–158 (2006)

    Article  Google Scholar 

  34. Simchi, A., Pohl, H.: Effects of laser sintering processing parameters on the microstructure and densification of iron powder. Mater. Sci. Eng. A 359(1–2), 119–128 (2003)

    Article  Google Scholar 

  35. Steen, W.M., Mazumder, J.: Laser Material Processing. Springer, London (2010)

    Book  Google Scholar 

  36. Tan, K., Chua, C., Leong, K., Cheah, C., Cheang, P., Abu Bakar, M., Cha, S.: Scaffold development using selective laser sintering of polyetheretherketone hydroxyapatite biocomposite blends. Biomaterials 24(18), 3115–3123 (2003)

    Article  Google Scholar 

  37. Wellmann, C., Wriggers, P.: A two-scale model of granular materials. Comput. Methods Appl. Mech. Eng. 205–208, 46–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Williams, J.M., Adewunmi, A., Schek, R.M., Flanagan, C.L., Krebsbach, P.H., Feinberg, S.E., Hollister, S.J., Das, S.: Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23), 4817–27 (2005)

    Article  Google Scholar 

  39. Zeng, K., Pal, D., Stucker, B.: A review of thermal analysis methods in laser sintering and selective laser melting. In: 23rd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, pp. 796–814 (2012)

  40. Zohdi, T.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20(4), 309–325 (2013)

    Article  MathSciNet  Google Scholar 

  41. Zohdi, T.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)

    Article  MATH  Google Scholar 

  42. Zohdi, T.: A direct particle-based computational framework for electrically enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude towards Ramesh Subramanian and Marco Brunelli of Siemens Energy, Inc. for funding this research. Additionally, the input of other members of the Siemens Corporation was useful in the formulation and validation of this approach. Finally the authors would like to thank fellow members of the CMRL lab at UC Berkeley for many fruitful discussions and their aid in the proofreading and editing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishi Ganeriwala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganeriwala, R., Zohdi, T.I. A coupled discrete element-finite difference model of selective laser sintering. Granular Matter 18, 21 (2016). https://doi.org/10.1007/s10035-016-0626-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0626-0

Keywords

Navigation