Granular Matter

, 18:1 | Cite as

Numerical and experimental verification of a damping model used in DEM

  • Wei Zhou
  • Xing Ma
  • Tang-Tat Ng
  • Gang Ma
  • Shao-Lin Li
Original Paper


This paper presents a study on the damping ratio \(({\upbeta })\) used in discrete element simulations. Physical experiments are performed by dropping particles from a predetermined height. Two kinds of granular particles, aluminum and steel spheres, are used. The size of these particles are the same. The process of particle depositing under gravity is simulated using the discrete element method. The experimental observation is compared with the numerical result to identify the appropriate \({\upbeta }\). The result indicates that the appropriate damping ratio used in discrete element simulations is between 0.2 and 0.3 %. Various \({\upbeta }\) are then used in the numerical simulations to study the effect of \({\upbeta }\) on the dropping process. The final height of the sample relates to \({\upbeta }\) and the drop height. The effect of \({\upbeta }\) is more profound for small drop height. For greater drop height, the effect of \({\upbeta }\) is negligible.


Granular materials Discrete element method (DEM) Damping 



This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 51379161 and 51322905).


  1. 1.
    Cundall, P.A., Strack, O.D.L.: The development of constitutive laws for soil using the distinct element method. Numer. Methods Geomech. 1, 289–317 (1979)Google Scholar
  2. 2.
    Landry, H., Lague, C., Roberge, M.: Discrete element representation of manure products. Comput. Electron. Agric. 51(1), 17–34 (2006)CrossRefGoogle Scholar
  3. 3.
    Ng, T.T.: Input parameters of discrete element methods. J. Eng. Mech. 132(7), 723–729 (2006)CrossRefGoogle Scholar
  4. 4.
    Grima, A.P., Wypych, P.W.: Investigations into calibration for discrete element modelling of granular materials. In: Proceedings of the \(6^{\rm th}\) International Conference for Conveying and Handling of Particulate Solids, Brisbane, Australia (2009)Google Scholar
  5. 5.
    Grima, A.P., Wypych, P.W.: Investigation into calibration of discrete element model parameters for scale-up and validation of particle-structure interactions under impact conditions. Powder Technol. 212(1), 198–209 (2011)CrossRefGoogle Scholar
  6. 6.
    Grima, A.P., Wypych, P.W.: Development and validation of calibration methods for discrete element modelling. Granul. Matter 13(2), 127–132 (2011)CrossRefGoogle Scholar
  7. 7.
    Zhang, D., Whiten, W.J.: The calculation of contact forces between particles using spring and damping models. Powder Technol. 88(1), 59–64 (1996)CrossRefGoogle Scholar
  8. 8.
    Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. EPL Europhys. Lett. 86(6), 60007 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Durda, D.D., Movshovitz, N., Richardson, D.C., Asphaugb, E., Morganb, A., Rawlingsd, A.R., Vestd, C.: Experimental determination of the coefficient of restitution for meter-scale granite spheres. Icarus 211(1), 849–855 (2011)Google Scholar
  10. 10.
    Montaine, M., Heckel, M., Kruelle, C., Schwager, T., Pöschel, T.: Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 84(4), 041306 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Imre, B., Räbsamen, S., Springman, S.M.: A coefficient of restitution of rock materials. Comput. Geosci. 34(4), 339–350 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Güttler, C., Heißelmann, D., Blum, J., Krijt, S.: Normal Collisions of Spheres: A literature survey on available experiments. arXiv:1204.0001 (2012)
  13. 13.
    King, H., White, R., Maxwell, I., Menon, N.: Inelastic impact of a sphere on a massive plane: nonmonotonic velocity-dependence of the restitution coefficient. EPL Europhys. Lett. 93(1), 14002 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Mao, K., Wang, M.Y., Xu, Z., Chen, T.: DEM simulation of particle damping. Powder Technol. 142(2), 154–165 (2004)CrossRefGoogle Scholar
  15. 15.
    Fang, X., Tang, J., Luo, H.: Granular damping analysis using an improved discrete element approach. J. Sound Vib. 308(1), 112–131 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Sun, Q., Jin, F., Zhou, G.G.D.: Energy characteristics of simple shear granular flows. Granul. Matter 15(1), 119–128 (2013)CrossRefGoogle Scholar
  17. 17.
    Bi, Z., Sun, Q., Jin, F., Zhang, M.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13(4), 503–510 (2011)CrossRefGoogle Scholar
  18. 18.
    Bridges, F.G., Supulver, K.D., Lin, D.N.C., Knightc, R., Zafrac, M.: Energy loss and sticking mechanisms in particle aggregation in planetesimal formation. Icarus 123(2), 422–435 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    Ng, T.T., Zhou, W., Ma, G., Chang, X.L.: Damping and particle mass in DEM simulations under gravity. J. Eng. Mech. 141(6), 04014167 (2014)CrossRefGoogle Scholar
  20. 20.
    Ng, T.T.: Triaxial test simulations with discrete element method and hydrostatic boundaries. J. Eng. Mech. 130(10), 1188–1194 (2004)CrossRefGoogle Scholar
  21. 21.
    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)CrossRefGoogle Scholar
  22. 22.
    Maeda, K., Hirabayashi, H.: Influence of grain properties on macro mechanical behaviours of granular media by DEM. J. Appl. Mech. 9, 623–630 (2006)CrossRefGoogle Scholar
  23. 23.
    Weir, G., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60(13), 3637–3647 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wei Zhou
    • 1
  • Xing Ma
    • 1
  • Tang-Tat Ng
    • 2
  • Gang Ma
    • 1
  • Shao-Lin Li
    • 1
  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina
  2. 2.Civil Engineering DepartmentUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations