Skip to main content

Friction in inertial granular flows: competition between dilation and grain-scale dissipation rates


Friction plays an important role in the behavior of flowing granular media. The effective friction coefficient is a description of shear strength in both slow and rapid flows of these materials. In this paper, we study the steady state effective friction coefficient \(\mu \) in a granular material in two steps. First, we develop a new relationship between the steady state effective friction coefficient, the shear rate, the solid fraction, and grain-scale dissipation processes in a simple shear flow. This relationship elucidates the rate- and porosity-dependent nature of effective friction in granular flows. Second, we use numerical simulations to study how the various quantities in the relationship change with shear rate and material properties. We explore how the relationship illuminates the grain-scale dissipation processes responsible for macroscopic friction. We examine how the competing processes of shearing dilation and grain-scale dissipation rates give rise to rate-dependence. We also compare our findings with previous investigations of effective friction in simple shear.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255(5051), 1523–1531 (1992)

    Article  ADS  Google Scholar 

  2. 2.

    da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  3. 3.

    Savage, S.B., Sayed, M.: Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391–430 (1984)

    Article  ADS  Google Scholar 

  4. 4.

    Wood, D.M.: Critical State Soil Mechanics. Cambridge University Press, New York (1990)

    MATH  Google Scholar 

  5. 5.

    Campbell, C.S.: Rapid granular flows. Ann. Rev. Fluid Mech. 22(1), 57–90 (1990)

    Article  ADS  Google Scholar 

  6. 6.

    Goldhirsch, I.: Rapid granular flows. Ann. Rev. Fluid Mech. 35(1), 267–293 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. 7.

    MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  8. 8.

    Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  9. 9.

    Jutzi, M., Asphaug, E.: Forming the lunar farside highlands by accretion of a companion moon. Nature 476(7358), 69–72 (2011)

    Article  ADS  Google Scholar 

  10. 10.

    Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108(17), 178301 (2012)

    Article  ADS  Google Scholar 

  11. 11.

    Tankeo, M., Richard, P., Édouard, C.: Analytical solution of the \(\mu \)(i)-rheology for fully developed granular flows in simple configurations. Granul. Matter 15(6), 881–891 (2013)

    Article  Google Scholar 

  12. 12.

    Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. 13.

    Azéma, E., Radjaï, F.: Internal structure of inertial granular flows. Phys. rev. lett. 112(7), 078001 (2014)

    Article  ADS  Google Scholar 

  14. 14.

    Rothenburg, L., Bathurst, R.J.: Analytical study of induced anistropy in idealized granular materials. Géotechnique 4(1), 601–614 (1989)

    Article  Google Scholar 

  15. 15.

    Hatano, T., Kuwano, O.: Origin of the velocity-strengthening nature of granular friction. Pure Appl. Geophys. 170(1–2), 3–11 (2013)

    Article  ADS  Google Scholar 

  16. 16.

    Jenkins, J.T.: Dense inclined flows of inelastic spheres. Granul. Matter 10(1), 47–52 (2007)

    Article  MATH  Google Scholar 

  17. 17.

    Sun, Q., Jin, F., Zhou, G.G.D.: Energy characteristics of simple shear granular flows. Granul. Matter 15(1), 119–128 (2013)

    Article  Google Scholar 

  18. 18.

    Babic, M., Shen, H.H., Shen, H.T.: The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. J. Fluid Mech. 219(10), 81–118 (1990)

    Article  ADS  Google Scholar 

  19. 19.

    Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

  20. 20.

    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

  21. 21.

    Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dy. 12(2–3):140–152 (2012)

  22. 22.

    Zhang, H.P., Makse, H.A.: Jamming transition in emulsions and granular materials. Phys. Rev. E 72(1), 011301 (2005)

    Article  ADS  Google Scholar 

  23. 23.

    Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525–541 (2004)

  24. 24.

    Bridges, F.G., Hatzes, A., Lin, D.N.C.: Structure, stability and evolution of Saturn’s rings. Nature 309, 333–335 (1984)

    Article  ADS  Google Scholar 

  25. 25.

    Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382 (1996)

    Article  ADS  Google Scholar 

  26. 26.

    Senetakis, K., Coop, M.R., Todisco, M.C.: The inter-particle coefficient of friction at the contacts of leighton buzzard sand quartz minerals. Soils Found. 53(5), 746–755 (2013)

    Article  Google Scholar 

  27. 27.

    Bagi, K.: Stress and strain in granular assemblies. Mech. Mater. 22(3), 165–177 (1996)

    Article  Google Scholar 

Download references


Support by the Air Force Office of Scientific Research Grant # FA9550-12-1-0091 through the University Center of Excellence in High-Rate Deformation Physics of Heterogenous Materials is gratefully acknowledged.

Author information



Corresponding author

Correspondence to José E. Andrade.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hurley, R.C., Andrade, J.E. Friction in inertial granular flows: competition between dilation and grain-scale dissipation rates. Granular Matter 17, 287–295 (2015).

Download citation


  • Granular materials
  • Granular flows
  • Friction
  • Dynamic material response
  • Rheology