Skip to main content
Log in

Three-dimensional DEM simulations of monotonic jacking in sand

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Understanding the soil responses during monotonic jacking can help improve the estimation of axial capacity in pile foundation design. To examine the soil responses in terms of strain and stress distributions, stress paths, the movement of particles and contact force mobilization during monotonic jacking, a three-dimensional simulation of a centrifuge model pile test was performed using the discrete element method. The simulation results show great resemblance to the measurements from the centrifuge model pile test. The distribution of incremental deviatoric strain \(d\varepsilon _{q}\) indicates the formation of a shear band in the shoulder of the ‘nose cone’ that is beneath the pile base. Based on this, the soil mass can be divided into three zones, i.e., the ‘nose cone’ (zone I), the shear band (zone II) and the surrounding soil beyond the shear band (zone III). The distributions of the radial stress \(\sigma _{r}^\prime \), hoop stress \(\sigma _{\theta }^\prime \), vertical stress \(\sigma _{v}^\prime \) and shear stress \(\tau _{rv}^\prime \) are in different modes and high-gradient distributions of mean stress \( p^\prime \) and deviatoric stress \(q\) are found in zone II. As for the stress path, the surrounding soil experiences four phases in terms of changes in \( p^\prime \) and \(q\) during monotonic jacking, and the change in the soil stress state decreases with increasing distance from the pile centerline. From a microscopic point of view, the particles in the shear band rotate strongly in a similar direction, fully mobilizing the frictions at the associated contacts. This provides a micromechanical explanation for the soil failure during monotonic jacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Salgado, R., Mitchell, J.K., Jamiolkowski, M.: Calibration chamber size effects on penetration resistance in sand. J. Geotech. Geoenviron. 124(9), 878–888 (1998)

    Article  Google Scholar 

  2. Zhang, L.M., Wang, H.: Field study of construction effects in jacked and driven steel H-piles. Géotechnique 59(1), 63–69 (2009)

    Article  Google Scholar 

  3. Randolph, M.F.: Science and empiricism in pile foundation design. Géotechnique 53(10), 847–875 (2003)

    Article  Google Scholar 

  4. Aoki, N., De Alencar, D.: An approximate method to estimate the bearing capacity of piles. Proc. Fifth Pan-American Conf. Soil Mech. Found. Eng. B. Aires 1, 367–376 (1975)

    Google Scholar 

  5. Price, G., Wardle, I.F.: A comparison between cone penetration test results and the performance of small diameter instrumented piles in stiff clay. Proc. Second Eur. Symp. Penetr. Test., ESOPT-II 2, 775–780 (1982). Amsterdam, The Netherlands

    Google Scholar 

  6. Cai, G., Liu, S., Tong, L., Du, G.: Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles. Eng. Geol. 104(3), 211–222 (2009)

    Article  Google Scholar 

  7. Terzaghi, K.: Theoretical Soil Mechanics. Wiley, NewYork (1943)

    Book  Google Scholar 

  8. Janbu, N., Senneset, K.: Effective stress interpretation of in situ static penetration tests. In : Proceedings of the ESOPT I, Stockholm, pp. 181–193 (1974)

  9. Durgunoglu, H.T., Mitchell, J.K.: Static penetration resistance of soil. In: Proceedings of the ASCE Spec Conference on In-Situ Measurement of Soil Parameters (1973)

  10. Chen, J.W., Juang, C.H.: Determination of drained friction angle of sands from CPT. J. Geotech. Eng., ASCE 122(5), 374–381 (1996)

    Article  Google Scholar 

  11. Carter, J.P., Randolph, M.F., Wroth, C.P.: Stress and pore pressure changes in clay during and after the expansion of a cylindrical cavity. Int. J. Numer. Anal. Metthods 3(4), 305–322 (1979)

    Article  MATH  Google Scholar 

  12. Randolph, M.F., Carter, J.P., Wroth, C.P.: Driven piles in clay—the effects of installation and subsequent consolidation. Géotechnique 29(4), 361–393 (1979)

    Article  Google Scholar 

  13. Chong, F.: Density changes of sand on cone penetration resistance. In: Proceedings of the 1st Symposium Penetration Testing, ISOPT-1, 2, pp. 707–714 (1988)

  14. Yu, H.S., Houlsby, G.T.: Finite cavity expansion in dilatant soil: loading analysis. Géotechnique 41(2), 173–183 (1991)

    Article  Google Scholar 

  15. Salgado, R., Mitchell, J.K., Jamiolkowski, M.: Cavity expansion and penetration resistance in sand. J. Geotech. Geoenviron. 123(4), 344–354 (1997)

    Article  Google Scholar 

  16. van den Berg, P.: Analysis of soil penetration. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (1994)

  17. Yu, H.S., Mitchell, J.K.: Analysis of cone resistance: review of methods. J. Geotech. Geoenviron. 124(2), 140–149 (1998)

    Article  Google Scholar 

  18. Jiang, M.J., Zhu, H.H., Harris, D.: Classical and non-classical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses. Granul. Matter 10(6), 439–455 (2008)

    Article  MATH  Google Scholar 

  19. Phillips, R., Valsangkar, A.J.: An experimental investigation of factors affecting penetration resistance in granular soil in centrifuge modeling. Report CUED/D-Soil TR 210, Cambridge (1987)

  20. Gui, M.W., Bolton, M.D., Garnier, J., Corte, J.F., Bagge, G., Laue, J., Renzi, R.: Guidelines for Cone Penetration Ttests in Sand. Centrifuge ’98 Balkema, pp. 155–160 (1998)

  21. Bolton, M.D., Gui, M.W., Garnier, J., Corte, J.F., Bagge, G., Laue, J., Renzi, R.: Centrifuge cone penetration tests in sand. Géotechnique 49(4), 543–552 (1999)

    Article  Google Scholar 

  22. Klotz, E.U., Coop, M.R.: An investigation of the effect of soil state on the capacity of driven piles in sands. Géotechnique 51(9), 733–751 (2001)

    Article  Google Scholar 

  23. White, D.J., Bolton, M.D.: Displacement and strain paths during plane-strain model pile installation in sand. Géotechnique 54(6), 375–397 (2004)

    Article  Google Scholar 

  24. Huang, A.-B., Ma, M.Y., Lee, J.S.: A micromechanical study of penetration tests in granular material. Mech. Mater. 16, 133–139 (1993)

    Article  ADS  Google Scholar 

  25. Jiang, M.J., Yu, H.S., Harris, D.: Discrete element modelling of deep penetration in granular soil. Int. J. Numer. Anal. Methods 30(4), 335–361 (2006)

    Article  MATH  Google Scholar 

  26. Jiang, M.J., Harris, D., Zhu, H.H.: Future continuum models for granular materials in penetration analyses. Granul. Matter 9(1), 97–108 (2007)

    MATH  Google Scholar 

  27. Butlanska, J., Arroyo, M., Gens, A., O’Sullivan, C.: Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. Can. Geotech. J. 51(1), 51–66 (2014)

    Article  Google Scholar 

  28. Tordesillas, A., Peters, J., Muthuswamy, M.: Role of particle rotations and rolling resistance in a semi-infinite particulate solid indented by a rigid flat punch. Anziam J. 46, C260–C275 (2005)

    Google Scholar 

  29. Arroyo, M., Butlanska, J., Gens, A., Calvetti, F., Jamiolkowski, M.: Cone penetration tests in a virtual calibration chamber. Géotechnique 61(6), 525–531 (2011)

    Article  Google Scholar 

  30. Bardet, J.P., Huang, Q.: Rotational stiffness of cylindrical particle contacts. In: Proceedings of the Second International Conference on Micromechanics of Granular Media, pp. 39–43 (1993)

  31. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  32. Hertz, H.: On the contact of rigid elastic solids and on hardness. Misc. Pap. 1(1), 163–183 (1896)

    Google Scholar 

  33. Cavarretta, I., Coop, M., O’Sullivan, C.: The influence of particle characteristics on the behavior of coarse grained soil. Géotechnique 60(6), 413–423 (2010)

    Article  Google Scholar 

  34. Barreto Gonzalez, D.: Numerical and experimental investigation into the behaviour of granular materials under generalized stress states. Ph.D. thesis, Imperial College (2009)

  35. Tordesillas, A., Zhang, J., Behringer, R.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng. 4(1), 3–16 (2009)

    Article  Google Scholar 

  36. Johnson, K.L.: Contact mechanics. Cambridge Univerisity Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  37. Ai, J., Chen, J.F., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)

    Article  Google Scholar 

  38. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36, 320–331 (2008)

    Article  Google Scholar 

  39. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials. Granul. Matter 12(5), 527–541 (2010)

  40. Estrada, N., Azema, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E. 84, 011306 (2011)

    Article  ADS  Google Scholar 

  41. Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E. 78, 021301 (2008)

    Article  ADS  Google Scholar 

  42. Chung, Y.C., Ooi, J.Y.: Confined compression and rod penetration of a dense granular medium: discrete element modelling and validation. In: Wu, W., Yu, H.S. (eds.) Modern Trends in Geomechanics, pp. 223–239. Springer, New York (2006)

    Chapter  Google Scholar 

  43. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009)

    Article  MATH  Google Scholar 

  44. Ferellec, J.F., McDowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12, 459–467 (2010)

    Article  MATH  Google Scholar 

  45. Maeda, K., Sakai, H., Kondo, A., Yamaguchi, T., Fukuma, M., Nukudani, E.: Stress-chain based micromechanics of sand with grain shape effect. Granul. Matter 12, 499–505 (2010)

    Article  MATH  Google Scholar 

  46. Kozicki, J., Tejchman, J.: Numerical simulation of sand behaviour using DEM with two different descriptions of grain roughness. In II International Conference on Particlebased Methods - Fundamentals and Applications (2011)

  47. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Physica A 269, 536–553 (1999)

    Article  ADS  Google Scholar 

  48. Kondic, L.: Dynamics of spherical particles on a surface: collision-induced sliding and other effects. Phys. Rev. E. 60, 751–770 (1999)

    Article  ADS  Google Scholar 

  49. Lau, Y.M.: Discrete element method simulations on triaxial test and triaxial creep tests. M.Phil. thesis, Hong Kong University of Science and Technology (2011)

  50. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109(1), 192–205 (2000)

    Article  Google Scholar 

  51. Markauskas, D., Kačianauskas, R.: Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granul. Matter 13(2), 143–148 (2011)

    Article  Google Scholar 

  52. Klotz, E.U., Coop, M.R.: On the identification of critical state lines for sands. Geotech. Test. J. 25(3), 1–14 (2002)

    Google Scholar 

  53. Morgan, K.J., Boettcher, M.S.: Numerical simulations of granular shear zones using the distinct element method. 1. Shear zone kinematics and the micromechanics of localization. J. Geophys. Res. 104, 2703–2719 (1999)

    Article  ADS  Google Scholar 

  54. Verdugo, R., Ishihara, K.: The steady state of sandy soil. Soil Found. 36(2), 81–91 (1996)

    Article  Google Scholar 

  55. Yang, J.: Influence zone for end bearing of piles in sand. J. Geotech. Geoenviron. 132(9), 1229–1237 (2006)

    Article  Google Scholar 

  56. Desrues, J., Viggiani, G.: Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Methods. Geomech. 28(4), 279–321 (2004)

    Article  Google Scholar 

  57. Shrivastava, S., Ghosh, C., Jonas, J.J.: A comparison of the von Mises and Hencky equivalent strains for use in simple shear experiments. Philos. Mag. 92(7), 779–786 (2012)

    Article  ADS  Google Scholar 

  58. Sakaguchi, E., Ozaki, E., Igarashi, T.: Plugging of the flow of granular materials during the discharge from a silo. Int. J. Mod. Phys. B 7, 1949–1963 (1993)

    Article  ADS  Google Scholar 

  59. Cundall, P.A.: Computer simulations of dense sphere assemblies. In: Satake, M., Jenkins, J.T. (eds.) Micromechanics of Granular Materials, pp. 113–123. Elsevier Science Publishers B.V., Amsterdam (1988)

    Google Scholar 

  60. Kuhn, M.R., Bagi, K.: Specimen size effect in discrete element simulations of granular assemblies. J. Eng. Mech. 135(6), 485–492 (2009)

    Article  Google Scholar 

  61. Itasca, PFC3D (particle flow code in 3 dimensions) manual. Version 4.0. Minnesota, USA (2008)

  62. Jiang, M.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  63. Jiang, M.J., Shen, Z.F., Wang, J.F.: A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Comput. Geotech. 65, 147–163 (2005)

    Article  Google Scholar 

  64. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(5), 579–597 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Hong Kong Research Grants Council (GRF 620310). The authors are grateful to the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hsing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, YH. Three-dimensional DEM simulations of monotonic jacking in sand. Granular Matter 17, 359–376 (2015). https://doi.org/10.1007/s10035-015-0562-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0562-4

Keywords

Navigation