Skip to main content
Log in

Discrete element cluster modeling of complex mesoscopic particles for use with the particle flow code method

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Based on the configuration principle of the discrete element method, local Delaunay mesh, and distance control the method, the overlapping discrete element cluster, non-overlapping discrete element cluster are employed to model mesoscopic geotechnical particles using discrete elements comprised of disks (or spheres). A kinetic compatibility procedure is established for adjusting the disk (or sphere) densities. Based on overlapping discrete element cluster modeling method, a new method, named boundary filling discrete element cluster method, has been put forward. The applicability of each method is considered by means of a numerical experiment. Of the three methods laboratory test considered, the boundary filing discrete element cluster modeling method demonstrated the highest calculation efficiency, followed by the overlapping discrete element cluster modeling method. Relative to these methods, the non-overlapping discrete element cluster modeling method is applicable to simulation of the deformation and fracture of particles, although the method demonstrates lower computational efficiency. All three methods can be readily applied to three-dimensional cases; thus, the discussed modeling methods will be beneficial in the field of mesoscopic analysis of geo-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Höhner, D., Wirtz, S., Scherer, V.: A numerical study on the influence of particle shape on hopper diskharge within the polyhedral and multi-sphere discrete element method. Powder Technol. 226, 16–28 (2012)

    Article  Google Scholar 

  2. Govender, N., Wilke, D.N., Kok, S., Els, R.: Development of a convex polyhedral discrete element simulation framework for NVIDIA Kepler based GPUs. J. Comput. Appl. Math. 270, 386–400 (2014)

    Article  MathSciNet  Google Scholar 

  3. Li, Y., Yong, X., Thornton, C.: A comparison of discrete element simulations and experiments for ’sand piles’ composed of spherical particles. Powder Technol. 160, 219–228 (2005)

    Article  Google Scholar 

  4. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: An experimental and numerical study of the angle of repose of coarse spheres. Powder Technol. 125, 45–54 (2002)

    Article  Google Scholar 

  5. Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  6. Sukumaran, B., Ashmawy, A.K.: Influence of inherent particle characteristics on hopper flow rate. Powder Technol. 138, 46–50 (2003)

    Article  Google Scholar 

  7. Latham, J.P., Munjiza, A.: The modelling of particle systems with real shapes. R. Soc. 362, 1953–1972 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Kačianauskas, R., Tumonis, L., Džiugys, A.: Simulation of the normal impact of randomly shaped quasi-spherical particles. Granul. Matter 16, 339–347 (2014)

    Article  Google Scholar 

  9. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  10. Ferellec, J.-F., McDowell, G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12, 459–467 (2010)

    Article  MATH  Google Scholar 

  11. Eliá š, J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458–465 (2014)

    Article  Google Scholar 

  12. Askarishahi, M., Salehi, M.-S., Molaei Dehkordi, A.: Numerical investigation on the solid flow pattern in bubbling gas–solid fluidized beds. Powder Technol. 264, 466–476 (2014)

  13. Yun, T., Kim, Y.: Evaluation of particle simulation methods using aggregate angularity and slump tests. Constr. Build. Mater. 66, 549–566 (2014)

    Article  Google Scholar 

  14. Markauskas, D., Kacianauskas, R., Dziugys, A., Navakas, R.: Investigations of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granul. Matter 12(1), 107–123 (2010)

    Article  MATH  Google Scholar 

  15. Höhner, D., Wirtz, S., Scherer, V.: A study on the in fluence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method. Powder Technol. 253, 256–265 (2014)

    Article  Google Scholar 

  16. Ashmawy, A.K., Sukumaran, B., Hoang, A.V.: Evaluating the influence of particle shape on liquefaction behavior using Discrete Element Method. In: Proceedings of the Thirteenth International Offshore and Polar Engineering Conference (ISOPE 2003) Honolulu, Hawii, May (2003)

  17. Das, N., Giordano, P., Barrot, D., et al.: Discrete element modeling and shape characterization of realistic granular shapes. Int. Offshore Polar Eng. Conf. Proc. 2, 525–532 (2008)

    Google Scholar 

  18. Jensen, R., Bosscher, P., Plesha, M., Edil, T.: DEM simulation of granular media-structure interface: effect of surface roughness and particle shape. Int. J. Numer. Anal. Methods Geomech. 23, 531–547 (1999)

    Article  MATH  Google Scholar 

  19. Alonso-Marroquin, F.: Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. EPL Europhys. Lett. 83(1), 14001 (2008)

    Article  ADS  Google Scholar 

  20. Phillips, C.L., et al.: Optimal filling of shapes. Phys. Rev. Lett. 108(19), 198304 (2012)

    Article  ADS  Google Scholar 

  21. Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A study on the validity of the multi-sphere discrete element method. Powder Technol. 188, 153–165 (2008)

    Article  Google Scholar 

  22. Liu, Y., Lo, S.H., Guan, Z.Q., Zhang, H.W.: Boundary recovery for 3D Delaunay triangulation. Finite Elem. Anal. Des. 84, 32–43 (2014)

    Article  MathSciNet  Google Scholar 

  23. Galindo-Torres, S.A., Munoz, J.D., Alonso-Marroquin, F.: Minkowski-Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Phys. Rev. E 82, 056713 (2010)

    Article  ADS  Google Scholar 

  24. Bagi, K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7(1), 31–43 (2005)

    Article  MATH  Google Scholar 

  25. Damasceno, P.F., Engel, M., Glotzer, S.C.: Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research work was partially carried out with financial support from the National Basic Research Program of China (973 Program) (2015CB057903),the National Natural Science Foundation of China (Grant No. 51309089), the National Key Technology R&D Program (Grant No. 2013BAB06B01), the Natural Science Foundation of Jiangsu Province (Grant No. BK20130846) and the Fundamental Research Funds for the Central Universities (2014B04914). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Li, Dj., Xu, Wy. et al. Discrete element cluster modeling of complex mesoscopic particles for use with the particle flow code method. Granular Matter 17, 377–387 (2015). https://doi.org/10.1007/s10035-015-0557-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0557-1

Keywords

Navigation