Skip to main content
Log in

Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A comprehensive experimental study has been made on angular sand to investigate various aspects of mechanical behavior. A hollow cylinder torsion testing apparatus is used in this program to apply a range of stress conditions on this angular quartzitic fine sand under monotonic drained shear. The effect of the magnitude and inclination of the principal stresses on an element of sand is studied through these experiments. This magnitude and inclination of the principal stresses are presented as an “ensemble measure of fabric in sands”. This ensemble measure of fabric in the sands evolves through the shearing process, and reaches the final state, which indeed has a unique fabric. The sand shows significant variation in strength with changing inclination of the principal stresses. The locus of the final stress state in principal stress space is also mapped from these series of experiments. Additional aspects of non-coaxiality, a benchmarking exercise with a few constitutive models is presented here. This experimental approach albeit indirect shows that a unique state which is dependent on the fabric, density and confining stress exists. This suite of experiments provides a well-controlled data set for a clear understanding on the mechanical behavior of sands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kirkpatrick, W.M.: The condition of failure of sands. Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, vol. 1, pp. 172–178 (1957)

  2. Dakoulas, P., Sun, Y.: Fine ottawa sand—experimental behaviour and theoretical predictions. J. Geotech. Eng. (ASCE) 118(12), 1906–1923 (1992)

    Article  Google Scholar 

  3. Arthur, J.R.F., Menzies, K.B.: Inherant anisotropy in a sand. Geotechnique 22(1), 115–128 (1972)

    Article  Google Scholar 

  4. Arthur, J.R.F., Chua, K.S., Dunstan, T.: Induced anisotropy in a sand. Geotechnique 27(1), 13–30 (1977)

    Article  Google Scholar 

  5. Bishop, A.W.: The strength of soils as engineering materials. Geotechnique 16(2), 91–130 (1966)

    Article  Google Scholar 

  6. Sayao, A., Vaid, Y.P.: Effect of intermediate principal stress on the deformation response of sand. Can. Geotech. J. 33, 822–828 (1996)

    Article  Google Scholar 

  7. Miura, K., Miura, S., Toki, S.: Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils Found. 26(4), 36–52 (1986)

    Article  Google Scholar 

  8. Lade, P.V., Rodriguez, N.M., Van Dyck, E.J.: Effects of principal stress directions on 3D failure conditions in cross-anisotropic sand. J. Geotech. Eng. (ASCE) 140(2),04013001 1–12 (2013)

  9. Oda, M., Iwashita, K.: Mechanics of Granular Materials—An Introduction. Balkema Publishers, Leiden (1999)

    Google Scholar 

  10. Gao, Z., Zhao, J., Li, X.S., Dafalias, Y.F.: A critical state sand plasticity model accounting for fabric evolution. Int. J. Numer. Anal. Methods Geomech. 38, 370–390 (2014)

    Article  Google Scholar 

  11. Fonseca, J., O’Sullivan, C., Coop, M.R., Lee, P.D.: Quantfying the evolution of soil fabric during shearing using scalar parameters. Geotechnique 63(10), 818–829 (2013)

    Article  Google Scholar 

  12. Hasan, A., Alshibli, K.: Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography. Geotechnique 60(5), 369–379 (2010)

    Article  Google Scholar 

  13. Symes, M.J., Gens, A., Hight, D.W.: Drained principal stress rotation in saturated sand. Geotechnique 38(1), 59–81 (1988)

    Article  Google Scholar 

  14. Pradel, D., Ishihara, K., Gutierrez, M.: Yielding and flow of sand under principal stress axes rotation. Soils Found. 30(1), 87–99 (1990)

    Article  Google Scholar 

  15. Gutierrez, M., Ishihara, K.: Non-coaxiality and energy dissipation in granular materials. Soils Found. 40(2), 49–59 (2000)

    Article  Google Scholar 

  16. Cai, Y., Yu, H., Wanatowski, D., Li, X.: Noncoaxial behavior of sand under various stress paths. J. Geotech. Eng. (ASCE) 139(8), 1381–1395 (2013)

    Article  Google Scholar 

  17. Hight, D.W., Gens, A., Symes, M.J.: The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique 33(4), 355–383 (1983)

    Article  Google Scholar 

  18. ASTM D854: standard test methods for specific gravity of soil solids by water pycnometer (2010)

  19. Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Petrol. 11(2), 64–72 (1941)

    Google Scholar 

  20. Powers, M.C.: A new roundness scale for sedimentary particles. J. Sediment. Petrol. 23(2), 117–119 (1953)

    Google Scholar 

  21. Cho, G.C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

  22. ASTM D4253: standard test methods for maximum index density and unit weight of soils using a vibratory table (2006)

  23. ASTM D4254: standard test methods for minimum index density and unit weight of soils and calculation of relative density (2006)

  24. Vaid, Y.P., Negussey, D.: Relative density of pluviated sand samples. Soils Found. 24(2), 101–105 (1984)

    Article  Google Scholar 

  25. Cresswell, A., Barton, M.E., Brown, R.: Determining the maximum density of sands by pluviation. Geotech. Test. J. (GTJODJ) 22(4), 324–328 (1999)

    Article  Google Scholar 

  26. Sayao, A., Vaid, Y.P.: A critical assessment of stress non uniformities in hollow cylinder test specimens. Soils Found. 31(1), 60–72 (1991)

    Article  Google Scholar 

  27. Gutierrez, M., Ishihara, K., Towhata, I.: Flow theory for sand during rotation of principal stress direction. Soils Found. 31(4), 121–132 (1991)

    Article  Google Scholar 

  28. Nakata, Y., Hyodo, M., Murata, H., Yasufuku, N.: Flow deformation of sands subjected to principal stress rotation. Soils Found. 38(2), 115–128 (1998)

    Article  Google Scholar 

  29. Skempton, A.W.: The pore-pressure coefficients A and B. Geotechnique 4(4), 143–147 (1954)

    Article  Google Scholar 

  30. Pietruszczak, S.: Fundamentals of Plasticity in Geomechanics. CRC Press/Balkema, Boca Raton (2010)

    MATH  Google Scholar 

  31. Atkinson, J.H., Bransby, P.L.: The Mechanics of Soils—An Introduction to Critical State Soil Mechanics. Mcgraw Hill Book Co. Ltd, Maidenhead (1982)

    Google Scholar 

  32. Been, K., Jefferies, M.: Stress-dilatancy in very loose sand. Can. Geotech. J. 41, 972–989 (2004)

    Article  Google Scholar 

  33. Kandasami, R.K., Murthy, T.G.: Effect of confining pressure on small strain stiffness properties of cauvery delta sand. GANGA (IGC) Conf. Proc. 1, 1–6 (2013)

    Google Scholar 

  34. Davis, R.O., Selvadurai, A.P.S.: Plasticity and Geomechanics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  35. Rao, K.K., Nott, P.R.: An Introduction to Granular Flow. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  36. Schofield, A., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  37. Lade, P.V.: Elasto-plastic stress–strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct. 13(11), 1019–1035 (1977)

    Article  MATH  Google Scholar 

  38. Lade, P.: Estimating parameters from a single test for the three-dimensional failure criterion for frictional materials. J. Geotech. Geoenviron. Eng. 140(8), 04014038 (2014)

    Article  Google Scholar 

  39. Li, X., Yu, H.S.: Interpretation of loading direction on the behaviour of anisotropic granular materials. Int. J. Eng. Sci. 47(11–12), 1284–1296 (2009)

    Article  Google Scholar 

  40. Zhao, J., Guo, N.: Unique critical state characteristics in granular media considering fabric anisotropy. Geotechnique 63(8), 695–704 (2013)

    Article  MathSciNet  Google Scholar 

  41. Evans, T.M., Frost, J.D.: Multiscale investigation of shear bands in sand: physical and numerical experiments. Int. J. Numer. Anal. Meth. Geomech. 34(15), 1634–1650 (2010)

    MATH  Google Scholar 

  42. Oda, M., Kazama, H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4), 465–481 (1998)

  43. Lam, W., Tatsuoka, F.: Effects of initial anisotropic fabric and \(\upsigma _{2}\) on strength and deformation characteristics of sand. Soils Found. 28(1), 89–106 (1988)

    Article  Google Scholar 

  44. Arthur, J.R.F., Phillips, A.B.: Homogeneous and layered sand in triaxial compression. Geotechnique 25(4), 799–815 (1975)

    Article  Google Scholar 

  45. Ochiai, H., Lade, P.V.: Three-dimensional behavior of sand with anisotropic fabric. J. Geotech. Eng. (ASCE) 109(10), 1313–1328 (1983)

    Article  Google Scholar 

  46. Oda, M., Koishikawa, I., Higuchi, T.: Experimental study of anisotropic shear strength of sand by plane strain test. Soils Found. 18(1), 25–38 (1978)

    Article  Google Scholar 

  47. Li, X.S., Dafalias, Y.F.: Anisotropic critical state theory: the role of fabric. J. Eng. Mech. (ASCE) 138(3), 263–275 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Dept. of Science and Technology, Govt. of India Grant No. SR-CE-0057-2010. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejas G. Murthy.

Appendix

Appendix

$$\begin{aligned} \overline{\sigma _z }= & {} \frac{W}{\pi \left( {r_o^2 -r_i^2 } \right) }+\frac{\left( {p_o r_o^2 -p_i r_i^2 } \right) }{\left( {r_o^2 -r_i^2 } \right) } \end{aligned}$$
(7)
$$\begin{aligned} \overline{\sigma _r }= & {} \frac{\left( {p_o r_o +p_i r_i } \right) }{\left( {r_o +r_i } \right) } \end{aligned}$$
(8)
$$\begin{aligned} \overline{\sigma _\theta }= & {} \frac{\left( {p_o r_o -p_i r_i } \right) }{\left( {r_o -r_i } \right) } \end{aligned}$$
(9)
$$\begin{aligned} \overline{\tau _{\theta z} }= & {} \frac{3.M_T }{2.\pi \left( {r_o^3 -r_i^3 } \right) }\end{aligned}$$
(10)
$$\begin{aligned} \overline{\varepsilon _z }= & {} \frac{\Delta H}{H} \end{aligned}$$
(11)
$$\begin{aligned} \overline{\varepsilon _r }= & {} -\frac{\left( {u_o -u_i } \right) }{\left( {r_o -r_i } \right) } \end{aligned}$$
(12)
$$\begin{aligned} \overline{\varepsilon _\theta }= & {} -\frac{\left( {u_o +u_i } \right) }{\left( {r_o +r_i } \right) } \end{aligned}$$
(13)
$$\begin{aligned} \overline{\gamma _{_{\theta z}} }= & {} -\frac{2\beta \left( {r_o^3 -r_i^3 } \right) }{3H\left( {r_0^2 -r_i^2 } \right) } \end{aligned}$$
(14)
$$\begin{aligned} \sigma _1= & {} \frac{\sigma _z +\sigma _\theta }{2}+\sqrt{\left( {\left( {\frac{\sigma _z -\sigma _\theta }{2}} \right) ^{2}+\left( {\tau _{\theta z} } \right) ^{2}} \right) } \end{aligned}$$
(15)
$$\begin{aligned} \sigma _3= & {} \frac{\sigma _z +\sigma _\theta }{2}\sqrt{\left( {\left( {\frac{\sigma _z -\sigma _\theta }{2}} \right) ^{2}+\left( {\tau _{\theta z} } \right) ^{2}} \right) } \end{aligned}$$
(16)
$$\begin{aligned} p^{\prime }= & {} \frac{\sigma _1^\prime +\sigma _2^\prime +\sigma _3^\prime }{3} \end{aligned}$$
(17)
$$\begin{aligned} q= & {} \frac{1}{\sqrt{2}}\left[ {\left( {\sigma _1^\prime -\sigma _2^\prime } \right) ^{2}+\left( {\sigma _2^\prime -\sigma _3^\prime } \right) ^{2}+\left( {\sigma _3^\prime -\sigma _1^\prime } \right) ^{2}} \right] ^{1/2} \nonumber \\\end{aligned}$$
(18)
$$\begin{aligned} \tau _{oct}= & {} \frac{1}{3}\left[ {\left( {\sigma _1^\prime -\sigma _2^\prime } \right) ^{2}+\left( {\sigma _2^\prime -\sigma _3^\prime } \right) ^{2}+\left( {\sigma _3^\prime -\sigma _1^\prime } \right) ^{2}} \right] ^{1/2} \end{aligned}$$
(19)
$$\begin{aligned} J_2= & {} \frac{1}{6}\left[ {\left( {\sigma _1^\prime -\sigma _2^\prime } \right) ^{2}+\left( {\sigma _2^\prime -\sigma _3^\prime } \right) ^{2}+\left( {\sigma _3^\prime -\sigma _1^\prime } \right) ^{2}} \right] \end{aligned}$$
(20)
$$\begin{aligned}&J_3 = \frac{1}{27}\Big [ \left( {\sigma _1 -\sigma _2 } \right) ^{2}\left( \sigma _1 +\sigma _2 -2.\sigma _3 \right) \nonumber \\&\qquad \quad +\left( {\sigma _2 -\sigma _3 } \right) ^{2}\left( {\sigma _2 +\sigma _3 -2.\sigma _1 } \right) \nonumber \\&\qquad \quad +\left( {\sigma _3 -\sigma _1 } \right) ^{2}\left( {\sigma _3 +\sigma _1 -2.\sigma _2 } \right) \Big ] \end{aligned}$$
(21)
$$\begin{aligned}&\quad q = \sqrt{3.J_2} \quad \left( {\hbox {for}\;\hbox {TX-C}\;\hbox {and}\;\hbox {TX-E}\;\;q=\sigma _1 -\sigma _3 } \right) \end{aligned}$$
(22)
$$\begin{aligned}&\quad \gamma _{oct} = \frac{2}{3}\left[ {\left( {\varepsilon _1 -\varepsilon _2 } \right) ^{2}+\left( {\varepsilon _2 -\varepsilon _3 } \right) ^{2}+\left( {\varepsilon _3 -\varepsilon _1 } \right) ^{2}} \right] ^{1/2} \nonumber \\\end{aligned}$$
(23)
$$\begin{aligned}&\quad D_p = \frac{{\left( {\varepsilon _{v,j+1} -\varepsilon _{v,j-1} } \right) -\left( {p_{j+1}^\prime -p_{j-1}^\prime } \right) }/K}{{\left( {\varepsilon _{q,j+1} -\varepsilon _{q,j-1} } \right) -\left( {q_{j+1} -q_{j-1} } \right) }/{3G}} \end{aligned}$$
(24)
$$\begin{aligned}&\quad {\eta } = \frac{q}{p^{\prime }} \end{aligned}$$
(25)
$$\begin{aligned}&\quad \sin \;3\theta = -\frac{3\sqrt{3}}{2}\cdot \frac{J_3 }{\left( {J_2 } \right) ^{3/2}} \end{aligned}$$
(26)

where \({\uptheta }\) varies from

$$\begin{aligned}&-\frac{\pi }{6}\le \theta \le \frac{\pi }{6} \end{aligned}$$
(27)
$$\begin{aligned}&\quad \hbox {Relative}\;\hbox {density},\;R.D = \frac{e_{\max } -e_{nat}}{e_{\max } -e_{\min }} \end{aligned}$$
(28)
$$\begin{aligned}&\quad Sin\varphi = \frac{\left( {\sigma _1^\prime -\sigma _3^\prime } \right) }{\sigma _1^\prime +\sigma _3^{\prime }} \end{aligned}$$
(29)

where \({\upvarphi }\) is the friction angle at the final stress state

where,

  • \({\upsigma }_{\mathrm{z}}\) is the axial stress

  • \({\upsigma }_{{\uptheta }}\) is the tangential stress

  • \({\upsigma }_{\mathrm{r}}\) is the radial stress

  • \({\uptau }_{\uptheta \mathrm{z}}\) is the shear stress along \({\uptheta }\hbox {z}\) plane

  • \(\hbox {r}_{\mathrm{o}}\) is the external radius of the specimen

  • \(\hbox {r}_{\mathrm{i}}\) is the internal radius of the specimen

  • \(\hbox {u}_{\mathrm{o}}\) is the external radial displacement

  • \(\hbox {u}_{\mathrm{i}}\) is the internal radial displacement

  • H is the initial height of the specimen

  • \(\Delta \hbox {H}\) is the change in axial displacement

  • \(\hbox {J}_{2}\) is the second deviatoric stress invariant

  • \({\upeta }\) is the stress ratio

  • \({\uptau }_{\mathrm{oct}},\, {\upgamma }_{\mathrm{oct}}\) is the octahedral shear stress and strain

  • \({\uptheta }\) is the Lode angle

  • \(\hbox {e}_{\max }\)—maximum void ratio the material can achieve

  • \(\hbox {e}_{\min }\)—minimum void ratio the material can achieve

  • \(\hbox {e}_{\mathrm{nat}}\)—void ratio at which the specimen is prepared

figure a

Pressure ratio at the critical/final state obtained from the series #1 and series #2 experiments. This ratio was used to identify the level of stress non-uniformity in specimen. Guitterez et al. [27] and Nakata et al. [28] have recommended a range \(0.75 \, < \, \hbox {P}_{\mathrm{i}}/\hbox {P}_{\mathrm{o}}< \, 1.3\). This range of pressures was maintained in the tests performed here. However, at the critical/final state the specimen with b = 0, \({\upalpha }\,=\,75^{\circ },\, 90^{\circ }\) and b = 1, \({\upalpha }\,=\,0^{\circ }\) violate this condition. A note to this effect has been made in the figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandasami, R.K., Murthy, T.G. Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands. Granular Matter 17, 217–230 (2015). https://doi.org/10.1007/s10035-015-0554-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0554-4

Keywords

Navigation