Skip to main content
Log in

On the tangential restitution problem: independent friction–restitution modeling

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

An Erratum to this article was published on 15 November 2014

Abstract

A single modeling of impact in terms of independent contributions of tangential restitution and friction is presented and tested with available literature data. Using this formulation, a description of oblique rebound of a homogenous sphere on a infinitely massive wall is obtained for both stick and gross slip regimes of impact using the same set of coefficients of restitution (normal and tangential) and friction based on the consideration of tangential forces at impact without viscose nor adhesive effects. This formulation which avoids sharp (apparent) variations in the coefficient of tangential restitution on the incident angle, provides a justification of several experimental results considered as anomalous in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(R\) :

Sphere radius (m)

\(m\) :

Sphere mass (kg)

u, v :

Pre- and post-impact center of mass velocities of the rebounding sphere (m/s)

U, V :

Pre- and post-impact velocities of the contacting point

\(\varvec{\upomega }, \varvec{\Omega }\) :

Pre- and post-impact angular velocities of the sphere (rad/s)

\(e_\mathrm{n}, e_\mathrm{t}\) :

Coefficients of normal and tangential restitution defined in the IFR model relative to the velocities of the contact point

\(e_\mathrm{t}\)(AFR):

‘Apparent’ coefficient of tangential restitution defined in the AFR model relative to the velocities of the contact point

\(e_\mathrm{t}\)(AFR, CM):

‘Apparent’ coefficient of tangential restitution defined in the AFR model relative to the mass center velocities

\(\mu \) :

Coefficient of sliding friction

\(\mathbf{J}_\mathbf{en}, \mathbf{J}_\mathbf{et}\) :

Normal and tangential impulses due to restitution (kg m/s)

\(\mathbf{J}_\mathbf{f}\) :

Impulse due to friction (kg m/s)

n,t :

Normal and tangential unit vectors (m)

\(\gamma , \delta \) :

Angles of incidence and rebound (deg)

\(\psi _{1}\) :

Tangential to normal pre-rebound velocity ratio

\(\psi _{2}\) :

Tangential post-rebound velocity to normal pre-rebound velocity ratio

\(\varepsilon _\mathrm{rot}\) :

Ratio between the post-impact rotational energy and the initial kinetic energy

\(\varepsilon _\mathrm{trans}\) :

Ratio between the post-impact translational energy and the initial kinetic energy

References

  1. Hopkins, M.A., Louge, M.Y.: Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 47–57 (1991)

    Article  ADS  Google Scholar 

  2. Herbst, O., Huthmann, M., Zippelius, A.: Dynamics of inelastically colliding spheres with Coulomb friction: relaxation of translational and rotational energy. Granul. Matter 2, 211–219 (2000)

    Article  Google Scholar 

  3. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10, 235–246 (2008)

    Article  MATH  Google Scholar 

  4. Ji, S., Hanes, D.M., Shen, H.H.: Comparisons of physical experiment and discrete element simulations of sheared granular materials in an annular shear cell. Mech. Mater. 41, 764–766 (2009)

    Article  Google Scholar 

  5. Müller, P., Pöschel, T.: Oblique impact of frictionless spheres: on the limitations of hard sphere models for granular dynamics. Granul. Matter 14, 115–120 (2012)

    Article  Google Scholar 

  6. Walton, O.R.: Numerical simulation of inelastic, frictional particle-particle interactions. In: Rocco, M.C. (ed.) Particulate Two-Phase Flow, pp. 884–911. Butterwort-Heinemann, Stonehem (1993)

    Google Scholar 

  7. Foerster, S.F., Louge, M.Y., Chang, H., Allia, K.: Measurement of the collision properties of small spheres. Phys. Fluids 6, 1108–1115 (1994)

    Article  ADS  Google Scholar 

  8. Gorham, D.A., Kharaz, A.H.: The measurement of particle rebound characteristics. Powder Technol. 112, 193–202 (2000)

    Article  Google Scholar 

  9. Kharaz, A.H., Gorham, D.A., Salman, A.D.: An experimental study of the elastic rebound of spheres. Powder Technol. 120, 281–291 (2001)

    Article  Google Scholar 

  10. Joseph, G.G., Hunt, M.L.: Oblique particle-wall collisions in a liquid. J. Fluid Mech. 510, 71–93 (2004)

    Article  ADS  MATH  Google Scholar 

  11. Moon, S.J., Swift, J.B., Swinney, H.L.: Role of friction in pattern formation in oscillated granular layers. Phys. Rev. E 69, 031301 (2004)

    Article  ADS  Google Scholar 

  12. Le Quiniou, A., Rioual, E., Héritier, P., Lapusta, Y.: Experimental study of the bouncing trajectory of a particle along a rotating wall. Phys. Fluids 21, 12–20 (2009)

    Article  Google Scholar 

  13. Wu, C.Y., Thornton, C., Li, L.-Y.: A semi-analytical model for oblique impact of elastoplastic spheres. Proc. R. Soc. A 465, 937–960 (2009)

    Article  ADS  MATH  Google Scholar 

  14. Antonyuk, S., Heinrich, S., Tomas, J., Deen, N.G., van Buijtenen, M.S., Kuipers, J.A.M.: Energy absorption during compression and impact of dry elastic–plastic spherical granules. Granul. Matter 12, 15–47 (2010)

    Article  MATH  Google Scholar 

  15. Mueller, P., Antonyuk, S., Stasiak, M., Tomas, J., Heinrich, S.: The normal and oblique impact of three types of wet granules. Granul. Matter 13, 455–463 (2011)

    Article  Google Scholar 

  16. Louge, M.Y., Adams, M.E.: Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elasto-plastic plate. Phys. Rev. E 65, 021303 (2002)

    Article  ADS  Google Scholar 

  17. Calsamiglia, J., Kennedy, S.W., Chatterjee, A., Ruina, A.L., Jenkins, J.T.: Anomalous frictional behavior in collisions of thin disks. ASME J. Appl. Mech. 66, 146–152 (1999)

    Article  ADS  Google Scholar 

  18. Mourya, R., Chatterjee, A.: Anomalous frictional behavior in collisions of thin disks revisited. ASME J. Appl. Mech. 75, 024501 (2008)

    Article  ADS  Google Scholar 

  19. Lorenz, A., Tuozzolo, C., Louge, M.Y.: Measurements of impact properties of small, nearly spherical particles. Exp. Mech. 37, 292–298 (1997)

    Article  Google Scholar 

  20. Maw, N., Barber, J.R., Fawcett, J.N.: The oblique impact of elastic spheres. Wear 38, 101–114 (1976)

    Article  Google Scholar 

  21. Maw, N., Barber, J.R., Fawcett, J.N.: The rebound of elastic bodies in oblique impact. Mech. Res. Commun. 4, 17–22 (1977)

    Article  Google Scholar 

  22. Maw, N., Barber, J.R., Fawcett, J.N.: The role of elastic tangential compliance in oblique impact. ASME J. Lubr. Technol. 103, 74–80 (1981)

    Google Scholar 

  23. Dong, H., Moys, M.H.: Experimental study of oblique impacts with initial spin. Powder Technol. 161, 22–31 (2006)

    Article  Google Scholar 

  24. Doménech-Carbó, A.: Analysis of oblique rebound using a redefinition of the coefficient of tangential restitution coefficient. Mech. Res. Commun. 54, 35–40 (2013)

    Article  Google Scholar 

  25. Brach, R.M.: Mechanical Impact Dynamics. Wiley, New York (2007)

    Google Scholar 

  26. Brach, R.M.: Friction, restitution, and energy loss in planar collisions. ASME J. Appl. Mech. 51, 164–170 (1984)

    Article  ADS  MATH  Google Scholar 

  27. Kane, T.R., Levinson, D.A.: An explicit solution of the general two-body collision problem. Comput. Mech. 2, 75–87 (1987)

    Article  MATH  Google Scholar 

  28. Thornton, C., Ning, Z.: Aheoretical model for stick/bounce behaviour of adhesive, elastic–plastic spheres. Powder Technol. 99, 154–162 (1998)

    Article  Google Scholar 

  29. Schwager, T., Becker, V., Pöschel, T.: Coefficient of tangential restitution for viscoelastic spheres. Eur. Phys. J. E 27, 107–114 (2008)

    Article  Google Scholar 

  30. Becker, V., Briesen, H.: Tangential-force model for interactions between bonded colloidal particles. Phys. Rev. E 78, 061404 (2008)

    Article  ADS  Google Scholar 

  31. Doménech-Carbó, A.: Non-smooth modelling of billiard- and superbilliard-ball collisions. Int. J. Mech. Sci. 50, 752–763 (2008)

    Article  Google Scholar 

  32. Stronge, W.J.: Impact Mechanics. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  33. Stronge, W.J.: Smooth dynamics of oblique impact with friction. Int. J. Impact Eng. 51, 36–49 (2013)

    Article  Google Scholar 

  34. Vu-Quoc, L., Zhang, X.: An elasto-plastic contact force-displacement model in the normal direction: displacement-driven version. Proc. R. Soc. Lond. A 455, 4013–4044 (1999)

    Article  ADS  MATH  Google Scholar 

  35. Zhang, X., Vu-Quoc, L.: An accurate elasto-plastic frictional tangential force-displacement model for granular flow simulations: displacement-driven formulation. J. Comput. Phys. 225, 730–752 (2007)

    Article  ADS  MATH  Google Scholar 

  36. Zhang, X., Vu-Quoc, L.: Modeling the dependence of the coefficient of restitution on the impact velocity of elasto-plastic collisions. Int. J. Impact Eng. 27, 317–341 (2002)

    Article  Google Scholar 

  37. Weir, G., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60, 3637–3647 (2005)

  38. Bhushan, B.: Introduction to Tribology. Wiley, New York (2002)

  39. Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1985)

  40. Orlando, A.D., Shen, H.H.: Effect of rolling friction on binary collisions of spheres. Phys. Fluids 22, 033304 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Financial support is gratefully acknowledged from the Spanish government (MEC) Project CTQ2011-28079-CO3-02 which is also supported with ERDF funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doménech-Carbó, A. On the tangential restitution problem: independent friction–restitution modeling. Granular Matter 16, 573–582 (2014). https://doi.org/10.1007/s10035-014-0507-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0507-3

Keywords

Navigation