Skip to main content

Experimental measurements of orientation and rotation of dense 3D packings of spheres

Abstract

Many recent advances in the study of granular media have stemmed from the improved capability to image and track individual grains in two and three dimensions. While two-dimensional systems readily yield both translational and rotational motion, a challenge in three-dimensional experiments is the tracking of rotational motion of isotropic particles. We propose an extension of the refractive index matched scanning technique as a method of measuring individual particle rotation. Initial measurements indicate that shear-driven rotational motion may stem from gear-like motion within the shear zone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Wang, L., Frost, J., Lai, J.: Three-dimensional digital representation of granular material microstructure from x-ray tomography imaging. J. Comput. Civ. Eng. 18, 28 (2004)

    Article  Google Scholar 

  2. Nakagawa, M., Altobelli, S., Caprihan, A., Fukushima, E., Jeong, E.K.: Non-invasive measurements of granular flows by magnetic resonance imaging. Exp. Fluids 16, 54 (1993)

    Article  Google Scholar 

  3. Brujić, J., Edwards, S.F., Hopkinson, I., Makse, H.A.: Measuring the distribution of interdroplet forces in a compressed emulsion system. Physica A 327(3–4), 201 (2003)

    ADS  Article  Google Scholar 

  4. Dijksman, J.A., Rietz, F., Lőrincz, K.A., van Hecke, M., Losert, W.: Invited article: Refractive index matched scanning of dense granular materials. Rev. Sci. Instr. 83, 011301 (2012)

    ADS  Article  Google Scholar 

  5. Seidler, G.T., Martinez, G., Seeley, L.H., Kim, K.H., Behne, E.A., Zaranek, S., Chapman, B.D., Heald, S.M., Brewe, D.L.: Granule-by-granule reconstruction of a sandpile from x-ray microtomography data. Phys. Rev. E. 62, 8175 (2000)

    ADS  Article  Google Scholar 

  6. Aste, T., Saadatfar, M., Senden, T.J.: Geometrical structure of disordered sphere packings. Phys. Rev. E. 71, 061302 (2005)

    ADS  Article  Google Scholar 

  7. Zhou, J., Long, S., Wang, Q., Dinsmore, A.D.: Measurement of forces inside a three-dimensional pile of frictionless droplets. Science 312(5780), 1631 (2006)

    ADS  Article  Google Scholar 

  8. Richard, P., Philippe, P., Barbe, F., Bourlès, S., Thibault, X., Bideau, D.: Analysis by x-ray microtomography of a granular packing undergoing compaction. Phys. Rev. E. 68, 020301 (2003)

    ADS  Article  Google Scholar 

  9. Slotterback, S., Toiya, M., Goff, L., Douglas, J.F., Losert, W.: Correlation between particle motion and voronoi-cell-shape fluctuations during the compaction of granular matter. Phys. Rev. Lett. 101, 258001 (2008)

    ADS  Article  Google Scholar 

  10. Sakaie, K., Fenistein, D., Carroll, T.J., van Hecke, M., Umbanhowar, P.: Mr imaging of reynolds dilatancy in the bulk of smooth granular flows. Europhys. Lett. 84(3), 38001 (2008)

    ADS  Article  Google Scholar 

  11. Herrera, M., McCarthy, S., Slotterback, S., Cephas, E., Losert, W., Girvan, M.: Path to fracture in granular flows: dynamics of contact networks. Phys. Rev. E. 83, 061303 (2011)

    ADS  Article  Google Scholar 

  12. Börzsönyi, T., Szabó, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T., Stannarius, R.: Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302 (2012)

    ADS  Article  Google Scholar 

  13. Wegner, S., Börzsönyi, T., Bien, T., Rose, G., Stannarius, R.: Alignment and dynamics of elongated cylinders under shear. Soft Matter 8, 10950 (2012)

    ADS  Article  Google Scholar 

  14. Ehrichs, E.E., Jaeger, H.M., Karczmar, G.S., Knight, J.B., Kuperman, V.Y., Nagel, S.R.: Granular convection observed by magnetic resonance imaging. Science 267(5204), 1632 (1995)

    ADS  Article  Google Scholar 

  15. Huang, N., Ovarlez, G., Bertrand, F., Rodts, S., Coussot, P., Bonn, D.: Flow of wet granular materials. Phys. Rev. Lett. 94, 028301 (2005)

    ADS  Article  Google Scholar 

  16. Cheng, X., Lechman, J.B., Fernandez-Barbero, A., Grest, G.S., Jaeger, H.M., Karczmar, G.S., Möbius, M.E., Nagel, S.R.: Three-dimensional shear in granular flow. Phys. Rev. Lett. 96, 038001 (2006)

    ADS  Article  Google Scholar 

  17. Dijksman, J.A., Wandersman, E., Slotterback, S., Berardi, C.R., Updegraff, W.D., van Hecke, M., Losert, W.: From frictional to viscous behavior: three-dimensional imaging and rheology of gravitational suspensions. Phys. Rev. E. 82, 060301 (2010)

    ADS  Article  Google Scholar 

  18. Wandersman, E., Dijksman, J.A., van Hecke, M.: Particle diffusion in slow granular bulk flows. Europhys. Lett. 100, 38006 (2012)

    ADS  Article  Google Scholar 

  19. Slotterback, S., Mailman, M., Ronaszegi, K., van Hecke, M., Girvan, M., Losert, W.: Onset of irreversibility in cyclic shear of granular packings. Phys. Rev. E. 85, 021309 (2012)

    ADS  Article  Google Scholar 

  20. Hill, K.M., Caprihan, A., Kakalios, J.: Bulk segregation in rotated granular material measured by magnetic resonance imaging. Phys. Rev. Lett. 78, 50 (1997)

    ADS  Article  Google Scholar 

  21. Porion, P., Sommier, N., Faugère, A.M., Evesque, P.: Dynamics of size segregation and mixing of granular materials in a 3d-blender by nmr imaging investigation. Powder Technol. 141(1–2), 55 (2004)

    Article  Google Scholar 

  22. Harrington, M., Weijs, J.H., Losert, W.: Suppression and emergence of granular segregation under cyclic shear. Phys. Rev. Lett. 111, 078001 (2013)

    ADS  Article  Google Scholar 

  23. Nordstrom, K., Lim, E., Harrington, M., Losert, W.: Granular dynamics during impact. ArXiv e-prints (2013)

  24. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996)

    ADS  Article  Google Scholar 

  25. Nichol, K., Daniels, K.E.: Equipartition of rotational and translational energy in a dense granular gas. Phys. Rev. Lett. 108, 018001 (2012)

    ADS  Article  Google Scholar 

  26. Harth, K., Kornek, U., Trittel, T., Strachauer, U., Höme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013)

    ADS  Article  Google Scholar 

  27. Brilliantov, N.V., Pöschel, T., Kranz, W.T., Zippelius, A.: Translations and rotations are correlated in granular gases. Phys. Rev. Lett. 98, 128001 (2007)

    Google Scholar 

  28. Bardet, J.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18(2), 159 (1994)

    Article  Google Scholar 

  29. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by dem. J. Eng. Mech. 124(3), 285 (1998)

    Article  Google Scholar 

  30. Luding, S.: The effect of friction on wide shear bands. Part. Sci. Tech. 26(1), 33 (2007)

    Article  Google Scholar 

  31. Halsey, T.C.: Motion of packings of frictional grains. Phys. Rev. E. 80, 011303 (2009)

    ADS  Article  Google Scholar 

  32. Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech. Mater. 1(4), 269 (1982)

    Article  Google Scholar 

  33. Börzsönyi, T., Szabó, B., Wegner, S., Harth, K., Török, J., Somfai, E., Bien, T., Stannarius, R.: Shear-induced alignment and dynamics of elongated granular particles. Phys. Rev. E. 86, 051304 (2012)

    ADS  Article  Google Scholar 

  34. Fenistein, D., van Hecke, M.: Kinematics: wide shear zones in granular bulk flow. Nature 425(6955), 256 (2003)

    ADS  Article  Google Scholar 

  35. Fenistein, D., van de Meent, J.W., van Hecke, M.: Universal and wide shear zones in granular bulk flow. Phys. Rev. Lett. 92, 094301 (2004)

    ADS  Article  Google Scholar 

  36. Tsai, J.C., Gollub, J.P.: Slowly sheared dense granular flows: crystallization and nonunique final states. Phys. Rev. E. 70(3), 031303 (2004)

    ADS  Article  Google Scholar 

  37. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid. Interf. Sci. 179, 298 (1996)

    Article  Google Scholar 

  38. Lun, C.K.K., Bent, A.A.: Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech. 258, 335 (1994)

    ADS  Article  Google Scholar 

  39. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N.: Rheophysics of dense granular materials: Discrete simulation of plane shear flows. Phys. Rev. E. 72, 021309 (2005)

    ADS  Article  Google Scholar 

  40. Zhang, J., Behringer, R.P., Goldhirsch, I.: Coarse-graining of a physical granular system. Prog. Theor. Phys. Suppl. 184, 16 (2010)

    ADS  Article  MATH  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge helpful discussions and technical assistance from Steven Slotterback. Financial support came from the National Science Foundation (DMR0907146) and the Defense Threat Reduction Agency (HDTRA1-10-0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Harrington.

Appendix: Moments of inertia

Appendix: Moments of inertia

Recall the moment of inertia for a solid sphere of mass \(M\) and radius \(R\),

$$\begin{aligned} I_{s} = \frac{2}{5} M R^2 \end{aligned}$$

For the purpose of these calculations, it will be more convenient to express this in terms of density \(\rho \),

$$\begin{aligned} I_{s} = \frac{8}{15} \rho \pi R^5 \end{aligned}$$
(2)

First, we start with the axis along the hole, about which rotation is visually indeterminant under the current setup. For convenience, the moment of inertia of the material which is removed will be subtracted from the solid sphere inertia.

$$\begin{aligned} I_1 = I_s - I_{hole,1} \end{aligned}$$

The moment of inertia of a differential mass element of the holed-out material is given by that of a thin solid disk,

$$\begin{aligned} \mathrm{d}I_{hole,1}&= \frac{1}{2} r^2 \mathrm{d}m\\ \mathrm{d}I_{hole,1}&= \frac{1}{2} \rho \pi r(z)^4 \mathrm{d}z, \end{aligned}$$

where

$$\begin{aligned} r(z) = \left\{ \begin{array}{ll} h, &{} \quad |z| \le \sqrt{R^2-h^2} \\ \sqrt{R^2-z^2}, &{} \quad |z| > \sqrt{R^2-h^2} \end{array}\right. \end{aligned}$$
(3)

\(h\) is the hole radius in the interior of the sphere and \(z\) is the coordinate along the drill axis. Then, after performing the integrals,

$$\begin{aligned} I_{1} = I_s \sqrt{1 - x^2} \left( 1 + \frac{1}{2} x^2 - \frac{3}{2} x^4\right) \end{aligned}$$
(4)

In the intermediate steps, \(I_s\) is substituted in using Eq. 2 and \(x\) is defined to be the hole size ratio, \(x = \frac{h}{R} < 1\). Next, we move to the moment of inertia for rotations about the axes perpendicular to the hole.

$$\begin{aligned} I_{2,3} = I_s - I_{hole,2,3} \end{aligned}$$

We again use a thin disk as the mass element for the hole. The differential moment of inertia is then defined by applying the perpendicular and parallel axis theorems,

$$\begin{aligned} \mathrm{d}I_{hole,2,3}&= \frac{1}{2} \mathrm{d}I_{hole,1} + z^2 \mathrm{d}m\\ \mathrm{d}I_{hole,2,3}&= \frac{1}{2} \mathrm{d}I_{hole,1} + \rho \pi r(z)^2 z^2 \mathrm{d}z \end{aligned}$$

Now, we evaluate the integrals using the same limits for \(z\) and definition of \(r(z)\) from Eq. 3. Again, \(I_s\) is substituted for the solid sphere inertia and \(x\) is substituted for the hole size ratio.

$$\begin{aligned} I_{2,3} = I_s \sqrt{1 - x^2} \left( 1 - \frac{3}{4} x^2 - \frac{1}{4} x^4\right) \end{aligned}$$
(5)

For our grains in particular, \(\rho = 1.18\) g/cm\(^3\). The grains have a diameter of 0.6 cm. For a solid sphere, Eq. 2 gives

$$\begin{aligned} I_s = 4.80 \cdot 10^{-3}\hbox { g} \cdot {\hbox {cm}^2} \end{aligned}$$

The hole diameter is 0.15 cm, which gives a size ratio of \(x = 0.25\). From Eqs. 4 and 5,

$$\begin{aligned} I_1&= 4.77 \cdot 10^{-3}\hbox { g} \cdot {\hbox {cm}^2}\\ I_{2,3}&= 4.43 \cdot 10^{-3}\hbox { g} \cdot {\hbox {cm}^2} \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harrington, M., Lin, M., Nordstrom, K.N. et al. Experimental measurements of orientation and rotation of dense 3D packings of spheres. Granular Matter 16, 185–191 (2014). https://doi.org/10.1007/s10035-013-0474-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0474-0

Keywords

  • Rotational motion
  • Three-dimensional imaging
  • Shear-banding
  • Particle tracking
  • Friction