Skip to main content
Log in

Full 3D investigation and characterisation of capillary collapse of a loose unsaturated sand using X-ray CT

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The aim of this paper is to characterise in 3D the capillary collapse phenomenon using X-ray Computed Tomography (X-ray CT) during water infiltration into a partially saturated soil. To understand the mechanisms leading to capillary collapse, we progressivelly saturated a specimen of sand by controlling the water pressure using the negative water column technique. During this imbibition process, we followed the granular structure using X-ray CT. The microstructure was analysed to assess the volume of water filling the pores and deformation of the granular skeleton using Volumetric Digital Image Correlation tools. Matheron’s granulometry was used in parallel to characterize the initial microstructure and its evolution during the imbibition. We show that the collapse phenomenon can occur in a clean sand and can be controlled continuously with the negative water column technique. The volume change of the specimen at local scale started at a particular water content which coincided with the coalescence of capillary bridges between grain clusters. Gravity effects leading to a non-negligible gradient of the hydrostatic pressure along the specimen’s height were observed and induced a vertical gradient of strain. Localisation of the vertical strain on conical surfaces and of the volumetric strain and water content at the bottom corner of the specimen appeared during the imbibition process. These localisations are thought to be due to an inhomogeneity of the initial density or/and an effect of cell walls facilitating the sliding of grains and the provision of water along preferential paths. However, in spite of those localisations, macroscopic measurements at the scale of the sample were representative of the local behaviour of the unsaturated sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Alonso, E., Gens, A., Hight, D.: Special problem soils. General report. In: Proceedings of the 9th European Conference on Soil Mechanics and Foundation Engineering, Dublin, vol. 3, pp. 1087–1146 (1987)

  2. Banhart, J.: Advanced Tomographic Methods in Materials Research and Engineering. Oxford University Press, New York (2008)

    Book  Google Scholar 

  3. Barden, L., McGown, A., Collins, K.: The collapse mechanism in partly saturated soil. Eng. Geol. 7(1), 49–60 (1973)

    Article  Google Scholar 

  4. Bay, B.K., Smith, T.S., Fyhrie, D.P., Saad, M.: Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39(3), 217–226 (1999)

    Article  Google Scholar 

  5. Benahmed, N., Canou, J., Dupla, J.C.: Structure initiale et propriétés de liquéfaction statique d’un sable. Comptes rendus mécanique 332(11), 887–894 (2004)

    ADS  MATH  Google Scholar 

  6. Blanc, R., Da Costa, J., Stitou, Y., Baylou, P., Germain, C.: Assessment of texture stationarity using the asymptotic behavior of the empirical mean and variance. IEEE Trans. Image Process. 17(9), 1481–1490 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bornert, M., Chaix, J., Doumalin, P., Dupré, J., Fournel, T., Jeulin, D., Maire, E., Moreaud, M., Moulinec, H., et al.: Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Instrumentation, Mesure, Métrologie 4(3–4), 43–88 (2004)

    Google Scholar 

  8. Bruchon, J.F., Pereira, J.M., Vandamme, M., Lenoir, N., Delage, P., Bornert, M.: X-ray microtomography characterisation of the changes in statistical homogeneity of an unsaturated sand during imbibition. Géotech. Lett. 3(2), 84–88 (2013)

    Article  Google Scholar 

  9. Buscarnera, G., Nova, R.: Modelling instabilities in triaxial testing on unsaturated soil specimens. Int. J. Numer. Anal. Methods Geomech. 35(2), 179–200 (2011)

    Article  MATH  Google Scholar 

  10. Canou, J.: Contribution à l’étude et à l’évaluation des propriétés de liquéfaction d’un sable. Ph.D. thesis (1989)

  11. Clemence, S.P., Finbarr, A.O.: Design considerations for collapsible soils. J. Geotech. Geoenviron. Eng. 107(ASCE), 16106 (1981)

    Google Scholar 

  12. Davis, G.R., Elliott, J.C.: Artefacts in X-ray microtomography of materials. Mater. Sci. Technol. 22(9), 1011–1018 (2006)

    Article  Google Scholar 

  13. Delage, P., Audiguier, M., Cui, Y.J., Howat, M.D.: Microstructure of a compacted silt. Can. Geotech. J. 33(1), 150–158 (1996)

    Article  Google Scholar 

  14. Delage, P., Cui, Y., Antoine, P.: Geotechnical problems related with loess deposits in Northern France. In: Proceedings of International Conference on Problematic Soils, vol. 25, p. 27 (2005)

  15. Dudley, J.H.: Review of collapsing soils. J. Soil Mech. Found. Div. 96(3), 925–947 (1970)

    Google Scholar 

  16. Escario, V., Saez, J.: Gradual collapse of soils originated by a suction decrease. In: Proceedings of the 8th International Conference on Soils Mechanics and Foundation Engineering, Moscow, pp. 6–11 (1973)

  17. Feda, J.: Mechanisms of collapse of soil structure. In: Genesis and Properties of Collapsible Soils, pp. 149–172. Springer (1995)

  18. Feldkamp, L., Davis, L., Kress, J.: Practical cone-beam algorithm. JOSA A 1(6), 612–619 (1984)

    Article  ADS  Google Scholar 

  19. Flavigny, E., Desrues, J., Palayer, B.: Note technique-le sable d’Hostun ”RF”. Revue française de géotechnique 53(53), 67–69 (1990)

    Google Scholar 

  20. Fredlund, D., Rahardjo, H.: An overview of unsaturated soil behaviour. Geotechnical special publication, pp. 1–1 (1993)

  21. Gili, J., Alonso, E.: Microstructural deformation mechanisms of unsaturated granular soils. Int. J. Numer. Anal. Methods Geomech. 26(5), 433–468 (2002)

    Article  MATH  Google Scholar 

  22. Grediac, M., Hild, F.: Mesures de champs et identification en mécanique des solides (série matériaux et métallurgie, mim) (2011)

  23. Haas, A., Matheron, G., Serra, J.: Morphologie mathématique et granulométrie en place. Annales des Mines 11, 736–753 (1967)

    Google Scholar 

  24. Habibagahi, G., Taherian, M.: Prediction of collapse potential for compacted soils using artificial neural networks. Scientia Iranica 11(1–2), 1–20 (2004)

    Google Scholar 

  25. Hild, F., Roux, S.: Digital image correlation: From displacement measurement to identification of elastic properties—a review. Strain 42(2), 69–80 (2006)

    Article  Google Scholar 

  26. Hsieh, J.: Computed tomography: principles, design, artifacts, and recent advances, vol. 114. Society of Photo Optical (2003)

  27. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML.: Evaluation of measurement data—guide to the expression of uncertainty in measurement. JCGM 100 (2008)

  28. Jotisankasa, A., Ridley, A., Coop, M.: Collapse behavior of compacted silty clay in suction-monitored oedometer apparatus. J. Geotech. Geoenviron. Eng. 133, 867 (2007)

    Article  Google Scholar 

  29. Kato, S., Kawai, K.: Deformation characteristics of a compacted clay in collapse under isotropic and triaxial stress state. Soils Found. 40(5), 75–90 (2000)

    Article  Google Scholar 

  30. Lantuejoul, C.: Ergodicity and integral range. J. Microsc. 161(3), 387–403 (1991)

    Article  Google Scholar 

  31. Lawton, E., Fragaszy, R., Hardcastle, J.: Collapse of compacted clayey sand. J. Geotech. Eng. 115(9), 1252–1267 (1989)

    Article  Google Scholar 

  32. Lawton, E.C., Fragaszy, R.J., Hardcastle, J.H.: Stress ratio effects on collapse of compacted clayey sand. J. Geotech. Eng. 117(5), 714–730 (1991)

    Article  Google Scholar 

  33. Lenoir, N., Bornert, M., Desrues, J., Bésuelle, P., Viggiani, G.: Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3), 193–205 (2007)

    Article  Google Scholar 

  34. Lins, Y., Schanz, T.: Determination of hydro-mechanical properties of sand. In: Schanz, T. (ed.) Unsaturated Soils: Experimental studies: Proceedings of the International Conference “From Experimental Evidence Towards Numerical Modeling of Unsaturated Soils”, vol. 1, pp. 15–32, Springer, Weimar, Germany (2005)

  35. Matheron, G., Blondel, F.: Traité de géostatistique appliquée. Editions Technip (1963)

  36. Muñoz-Castelblanco, J., Delage, P., Pereira, J., Cui, Y., et al.: Some aspects of the compression and collapse behaviour of an unsaturated natural loess. Géotech. Lett., 1, 17–22 (2011)

    Google Scholar 

  37. Muñoz-Castelblanco, J., Pereira, J.M., Delage, P., Cui, Y.J., et al.: The water retention properties of a natural unsaturated loess from northern france. Géotechnique 62(2), 95–106 (2012)

    Article  Google Scholar 

  38. Pannier, Y., Lenoir, N., Bornert, M.: Discrete volumetric digital image correlation for the investigation of granular type media at microscale: accuracy assessment. In: EPJ Web of Conferences: ICEM 14-14th International Conference on Experimental Mechanics, EDP Science, vol. 6, p. 35003 (2010)

  39. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  40. Richefeu, V., El Youssoufi, M., Peyroux, R., Radjaï, F.: A model of capillary cohesion for numerical simulations of 3D polydisperse granular media. Int. J. Numer. Anal. Methods Geomech. 32(11), 1365–1383 (2008)

    Article  MATH  Google Scholar 

  41. Rodrigues, R.A., Vilar, O.M.: Relationship between collapse and soil-water retention curve of a sandy soil. In: Miller, G.A., Zapata, C.E., Houston, S.L., Fredlund, D.G. (eds.) Unsaturated Soils 2006, Proceedings of the Fourth International Conference on Unsaturated Soils, pp. 1025–1036. ASCE (2006)

  42. Romero, E., Della Vecchia, G., Jommi, C.: An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4), 313–328 (2011)

    Article  Google Scholar 

  43. Samadani, A., Kudrolli, A.: Angle of repose and segregation in cohesive granular matter. Phys. Rev. E 64(5), 051301 (2001)

    Article  ADS  Google Scholar 

  44. Santamarina, J.C.: Soil behavior at the microscale: particle forces. In: Germaine, J.T., Sheahan, T.C., Whitman, R.V. (eds.) Soil Behavior and Soft Ground Construction, vol. 119, pp. 25–56. ASCE and the Geo-Institute (2003)

  45. Schanz, T., Lins, Y., Tripathy, S., Agus, S.: Model test for determination of permeability and collapse potential of a partially saturated sand. PARAM 2002, 111–121 (2002)

    Google Scholar 

  46. Cugnon de Sevricourt, O., Tariel, V.: Cameleon language part 1: Processor. CoRR abs/1110.4802 (2011)

  47. Sun, D., Sheng, D., Xu, Y.: Collapse behaviour of unsaturated compacted soil with different initial densities. Can. Geotech. J. 44(6), 673–686 (2007)

    Article  Google Scholar 

  48. Tadepalli, R., Fredlund, D.: The collapse behavior of a compacted soil during inundation. Can. Geotech. J. 28(4), 477–488 (1991)

    Google Scholar 

  49. Tariel, V.: Image analysis of cement paste: Relation to diffusion transport. Ph.D. thesis, Ecole Polytechnique (2009)

  50. Thomson, P., Wong, R.: Specimen nonuniformities in water-pluviated and moist-tamped sands under undrained triaxial compression and extension. Can. Geotech. J. 45(7), 939–956 (2008)

    Google Scholar 

  51. Vanapalli, S., Nicotera, M., Sharma, R.: Axis translation and negative water column techniques for suction control. Geotech. Geol. Eng. 26(6), 645–660 (2008)

    Article  Google Scholar 

  52. Vilar, O., Rodrigues, R.: Collapse behavior of soil in a brazilian region affected by a rising water table. Can. Geotech. J. 48(2), 226–233 (2011)

    Article  Google Scholar 

  53. Wang, G., Lin, T., Cheng, P.: Error analysis on a generalized Feldkamp’s cone-beam computed tomography algorithm. Scanning 17(6), 361–370 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Vincent Tariel for his advices to treat and to analyse images with the Caméléon-Population software. The Laboratoire Navier microtomograph used to run these experiments has been acquired with the financial support of Région Île-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bornert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruchon, JF., Pereira, JM., Vandamme, M. et al. Full 3D investigation and characterisation of capillary collapse of a loose unsaturated sand using X-ray CT. Granular Matter 15, 783–800 (2013). https://doi.org/10.1007/s10035-013-0452-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0452-6

Keywords

Navigation