Skip to main content
Log in

Radial segregation of multi-component granular media in a rotating tumbler

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Segregation and mixing of granular mixtures are important to the minerals, food processing and pharmaceuticals industry to name just a few. It has recently been demonstrated that a rotating tumbler is a suitable device for separating out binary granular mixtures, i.e. mixtures composed of only two different particle types. However, most practical granular mixtures are composed of multi-component particle types. We therefore study the capability of this rotating tumbler to segregate mixtures composed of more than two components where the particles differ either in size or density. The general pattern of segregation involves the formation of an inner core of smallest or densest particles followed, at larger radii, by the next largest or densest particle type and so-on in an onion-like pattern. In the mixtures where particles differ in size we always get relatively pure inner cores of the smallest particles, while the other regions are less segregated. On the other hand for mixtures whose particles differ in density we get a relatively pure outer region (adjacent to cylinder wall) consisting of the least dense particles while the other regions are less segregated. We attempt to relate the simulation results to phenomenological theory and find that size segregation in a specific multi-component mixture can be suitably described by a recent theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Duran, J.: Sands, Powders, and Grains. An Introduction to the Physics of Granular Matter. Springer, New York (2000)

  2. Bagnold, R.A.: The Physics of Blown Sands and Desert Dunes. Chapman and Hall, London (1941)

    Google Scholar 

  3. Jaeger, H.M., Nagel, S.R.: Physics of the granular state. Science 255, 1523–1531 (1992)

    Article  ADS  Google Scholar 

  4. Mehta, A.: Granular Matter: An Interdisciplinary Approach. Springer, Berlin (1994)

    Book  Google Scholar 

  5. Ristow, G.H.: Pattern Formation in Franular Materials. Springer, Berlin (1994)

    Google Scholar 

  6. Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Ann. Rev. Fluid Mech. 32, 55–91 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  7. Meier, S.W., Lueptow, R.M., Ottino, J.M.: A dynamical systems approach to mixing and segregation of granular materials in tumblers. Adv. Phys. 56, 757–827 (2007)

    Article  ADS  Google Scholar 

  8. Khakhar, D.V., McCarthy, J.J., Ottino, J.M.: Radial segregation of granular mixtures in rotating cylinders. Phys. Fluids 9, 3600–3614 (1997)

    Article  ADS  Google Scholar 

  9. Gray, J.M.N.T.: Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 1–29 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  10. Cantelaube, F., Bideau, D.: Radial segregation in a 2d Drum: an experimental analysis. Europhys. Lett. 30, 133–138 (1995)

    Article  ADS  Google Scholar 

  11. Metcalfe, G., Shinbrot, T., McCarthy, J.J., Ottino, J.M.: Avalanche mixing of granular solids. Nature 374, 39–41 (1995)

    Article  ADS  MATH  Google Scholar 

  12. Makse, H.A.: Continuous avalanche segregation of granular mixtures in thin rotating drums. Phys. Rev. Lett. 83, 3186–3189 (1999)

    Google Scholar 

  13. Kwapinska, M., Saage, G., Tsotsas, E.: Mixing of particles in rotary drums. Powder Technol. 161, 69–78 (2006)

    Article  Google Scholar 

  14. Pereira, G.G., Sinnott, M.D., Cleary, P.W., Liffman, K., Metcalfe, G., Sutalo, I.D.: Insights from simulations into mechanisms for density segregation of granular mixtures in rotating cylinders. Granul. Matter 13, 53–74 (2011)

    Article  Google Scholar 

  15. Pereira, G.G., Pucilowski, S., Liffman, K., Cleary, P.W.: Streak patterns in binary granular media. Appl. Math. Mod. 35, 1638–1646 (2011)

    Google Scholar 

  16. Rapaport, D.C.: Radial and axial segregation of granular matter in a rotating cylinder: a simulation study. Phys. Rev. E 75, 031301(1–11) (2007)

  17. Hajra, S.K., Khakhar, D.V.: Radial segregation of ternary granular mixtures in rotating cylinders. Granul. Matter 13, 475–486 (2011)

    Article  Google Scholar 

  18. Gupta Das, S., Bhatia, S.K., Khakhar, D.V.: Axial segregation of particles in a horizontal rotating cylinder. Chem. Eng. Sci. 46, 1513–1517 (1991)

    Article  Google Scholar 

  19. Newey, M., Ozik, J., VanDerMeer, S.M., Ott, E., Losert, W.: Band-in-band segregation of multidisperse granular mixtures. Europhys. Lett. 66, 205–211 (2004)

    Article  ADS  Google Scholar 

  20. Metzger, M.J., Remy, B., Glasser, B.J.: All the Brazil nuts are not on top: vibration induced granular size segregation of binary, ternary and multi-sized mixtures. Powder Tech. 205, 42–51 (2011)

    Google Scholar 

  21. Jha, A.K., Puri, V.M.: Percolation segregation of multi-sized and multi-component particulate materials. Powder Tech. 197, 274–282 (2010)

    Article  Google Scholar 

  22. Gray, J.M.N.T., Ancey, C.: Multi-component particle segregation in shallow avalanches. J. Fluid Mech. 678, 535–588 (2011)

    Google Scholar 

  23. Marks, B., Rognon, P., Einav, I.: Grainsize dynamics of polydisperse granular segregation down inclined planes. J. Fluid Mech. 690, 499–511 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Campbell, C.S.: Rapid granular flows. Ann. Rev. Fluid Mech. 22, 57–92 (1990)

    Article  ADS  Google Scholar 

  25. Barker, G.C.: Computer simulations of granular materials. In: Mehta, A. (ed.) Granular Matter: An Interdisciplinary Approach. Springer, NY (1994)

    Google Scholar 

  26. Walton, O.R.: Numerical simulation of inelastic frictional particle-particle interaction, Chapter 25. In: Roco, M.C. (ed.) Particulate Two-Phase Flow, pp. 884–991 (1994)

  27. Cleary, P.W.: Predicting charge motion, power draw, segregation, wear and particle breakage in ball mills using discrete element methods. Miner. Eng. 11, 1061–1080 (1998)

    Article  Google Scholar 

  28. Cleary, P.W.: Discrete element modelling of industrial granular flow applications. TASK. Q. Sci. Bull. 2, 385–416 (1998)

    Google Scholar 

  29. Cleary, P.W.: Large scale industrial DEM modelling. Eng. Comput. 21, 169–204 (2004)

    Article  MATH  Google Scholar 

  30. Thornton, C., Cummins, S., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol. 210, 189–197 (2011)

    Article  Google Scholar 

  31. Thornton, C., Cummins, S., Cleary, P.W.: An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol. 233, 30–46 (2013)

    Google Scholar 

  32. Pőschel, T., Buchholtz, V.: Complex flow of granular material in a rotating cylinder. Chaos Solitons Fract. 5, 1901–1912 (1995)

    Article  ADS  Google Scholar 

  33. Cleary, P.W., Sinnott, M.D.: Assessing mixing characteristics of particle mixing and granulation devices. Particuology 6, 419–444 (2008)

    Google Scholar 

  34. Ahmed, S., John, S.E., Sutalo, I.D., Metcalfe, G., Liffman, K.: Exprimental study of density segregation at end walls in a horizontal rotating cylinder saturated with fluid: friction to lubrication transition. Granul. Matter 14, 319–332 (2012)

    Article  Google Scholar 

  35. Drahun, J.A., Bridgewater, J.: The mechanisms of free surface segregation. Powder Technol. 36, 39–53 (1983)

    Article  Google Scholar 

  36. Savage, S.B., Lun, K.K.: Particle segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 180, 311–335 (1988)

    Article  ADS  Google Scholar 

  37. Gray, J.M.N.T., Thornton, A.R.: A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. Lond. Ser. A 461, 1447–1473 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Tripathi, A., Khakhar, D.V.: Density difference-driven segregation in a dense granular flow. J. Fluid Mech. 717, 643–669 (2013)

    Article  ADS  Google Scholar 

  39. Wiederseiner, S., Andreini, N., Epely-Chauvin, G., Moser, G., Monnereau, M., Gray, J.M.N.T., Ancey, C.: Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23, 013301 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, G.G., Cleary, P.W. Radial segregation of multi-component granular media in a rotating tumbler. Granular Matter 15, 705–724 (2013). https://doi.org/10.1007/s10035-013-0448-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0448-2

Keywords

Navigation