Skip to main content
Log in

Characterization of fluctuations in granular hopper flow

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present a 2D discrete modelling of sand flow through a hopper using realistic grain shapes. A post-processing method is used to assess the local fluctuations in terms of void ratio, coordination number, velocity magnitude, and mean stress. The characteristics of fluctuations associated with the four considered quantities along the vertical axis of the hopper and across the entire hopper are carefully examined. The flow fluctuations for coordination number, velocity magnitude and mean stress are all found to take the form of radial waves originating from the lower centre of the hopper and propagating in the opposite direction of the granular flow. Quantitative characteristics of these waves (shape, amplitude, frequency, velocity, etc.) are identified. The fluctuations in void ratio however are not supportive of the observation of density waves in the granular flow as mentioned in some experiments. The possible reasons for this apparent contradiction are discussed, as well as possible extensions of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  2. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular Assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  3. McDowel, G., Li, H., Lowndes, I.: The importance of particle shape in discrete-element modelling of particle flow in a chute. Géotech. Lett. 1(3), 59–64 (2011)

    Article  Google Scholar 

  4. Peng, G., Herrmann, J.: Density waves and 1/f density fluctuations in granular flow. Phys. Rev. E 51(3), 1745–1756 (1995)

    Article  ADS  Google Scholar 

  5. Baran, O., Halsey, T., Grest, G.S., Lechman, J.B.: Velocity correlations in dense gravity-driven granular chute flow. Phys. Rev. E 74, 051302 (2006)

    Article  ADS  Google Scholar 

  6. Azema, E., Descantes, Y., Roquet, N., Roux, J.-N., Chevoir, F.: Discrete simulation of dense flows of polyhedral grains down a rough inclined plane. Phys. Rev. E 86, 031303 (2012)

    Article  ADS  Google Scholar 

  7. Richefeu, V., Mollon, G., Daudon, D., Villard, P.: Dissipative contacts and realistic block shapes for modelling rock avalanches. Eng. Geol. 149–150, 78–92 (2012)

    Article  Google Scholar 

  8. Mollon, G., Richefeu, V., Villard, P., Daudon, D.: Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J. Geophys. Res. Solid Earth 117, F02036 (2012)

    Article  ADS  Google Scholar 

  9. Zhu, H.P., Yu, A.B.: Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis. Granul. Matt. 7, 97–107 (2005)

    Article  MATH  Google Scholar 

  10. Nguyen, T.V., Brennen, C., Sabersky, R.H.: Gravity flow of granular materials in conical hoppers. J. Appl. Mech. 46, 529–535 (1979)

    Article  ADS  MATH  Google Scholar 

  11. Bazant, M.Z.: A theory of cooperative diffusion in dense granular flows. arXiv:cond-mat/0307379v2 (2004)

  12. Hendy, S.: Instabilities in granular flows. arXiv:cond-mat/000 7236v1 (2008)

  13. Sun, J., Sundaresan, S.: Radial hopper flow prediction using constitutive model with microstructure, evolution. arXiv:1207.1751v1 (2012)

  14. Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technol. 39, 29–40 (1983)

    Google Scholar 

  15. Baxter, G.W., Behringer, R.P., Fagert, T., Johnson, G.A.: Pattern formation in flowing sand. Phys. Rev. Lett. 62(24), 2825–2828 (1989)

    Article  ADS  Google Scholar 

  16. Choi, J., Kudrolli, A., Bazant, M.Z.: Velocity profile of granular flows inside silos and hoppers. J. Phys. Condens. Matt. 17, S2533–S2548 (2005)

    Article  ADS  Google Scholar 

  17. Gardel, E., Keene, E., Dragulin, S., Easwar, N., Menon, N.: Force-velocity correlations in a dense, collisional, granular flow. arXiv:cond-mat/0601022 (2006)

  18. Gardel, E., Seitaridou, E., Facto, K., Keene, E., Hattam, K., Easwar, N., Menon, N.: Dynamical fluctuations in dense granular flows. Philos. Trans. R. Soc. A 367, 5109–5121 (2009)

    Article  ADS  Google Scholar 

  19. Gentzler, M., Tardos, G.I.: Measurement of velocity and density profiles in discharging conical hoppers by NMR imaging. Chem. Eng. Sci. 64, 4463–4469 (2009)

    Article  Google Scholar 

  20. Vivanco, F., Rica, S., Melo, F.: Dynamical arching in a two dimensional granular flow. Granul. Matt. 14(5), 563–576 (2012)

    Article  Google Scholar 

  21. Ristow, G.H., Herrmann, H.J.: Density patterns in two-dimensional hoppers. Phys. Rev. E 50(1), R5–R8 (1994)

    Article  ADS  Google Scholar 

  22. Potapov, A., Campbel, C.S.: Computer simulation of hopper flow. Phys. Fluids 8(11), 2884–2894 (1996)

    Article  ADS  MATH  Google Scholar 

  23. Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26, 89–111 (2002)

    Article  MATH  Google Scholar 

  24. Radjai, F., Roux, S.: Turbulentlike fluctuations in quasistatic flow of granular media. Phys. Rev. Lett. 89(6), 064302 (2002)

    Article  ADS  Google Scholar 

  25. Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Géotech. Lett. 2, 113–118 (2012)

    Article  Google Scholar 

  26. Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granul. Matt. 14, 695–705 (2012)

    Article  Google Scholar 

  27. Mollon, G., Zhao, J.: Fourier-Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul. Matt. 14(5), 621–638 (2012)

    Article  Google Scholar 

  28. Das, N.: Modeling three-dimensional shape of sand grains using discrete element method. PhD Thesis, University of South Florida, 149 p. (2007)

  29. Ferellec, J.-F., McDowell, G.: A method to model realistic particle shape and inertia in DEM. Granul. Matt. 12, 459–467 (2010)

    Article  MATH  Google Scholar 

  30. Mollon, G., Zhao, J.: The influence of particle shape on granular hopper flow. In: Powders and Grains 2013: AIP Conference Proceedings 1542, pp. 690–693. doi: 10.1063/1.4812025 (2013)

  31. Mollon, G., Zhao, J.: Generating realistic 3D sand particles using Fourier descriptors. Granul. Matt. 15(1), 95–108 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the constructive comments offered by the two anonymous reviewers. The study was supported by Research Grants Council of Hong Kong (under RGC/GRF 622910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhem Mollon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollon, G., Zhao, J. Characterization of fluctuations in granular hopper flow. Granular Matter 15, 827–840 (2013). https://doi.org/10.1007/s10035-013-0445-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0445-5

Keywords

Navigation