Skip to main content
Log in

Tilting process with humidity: DEM modeling and comparison with experiments

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular matter is present everywhere in our practical lives and mostly used in natural environment (i.e. classical atmospheric conditions). This fact implies that the humidity rate which controls the water content can be involved in their behaviors. Especially adhesion forces between grains are linked to this humidity rate. Here we study a well known experiment defined as a laboratory test for avalanches. We continuously tilt a box filled with grains up to the appearance of precursors and full avalanches. These avalanches are directly proportional to the forces acting at the contact level between grains. We use a numerical approach based on the classical discrete element methods ‘spring-Dashpot’ with soft model. Firstly, we check the ability of our code to handle tilting experiments, then, an extra adhesion term linked to the humidity rate is added. Full comparison between ‘dry’ case and humid case is done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Gómez, I., Ippolito, I., Chertcoff, R.: Characterization of wet granular media behaviour under diferent relative humidity conditions. Powder Technol. submitted (2012)

  2. Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55(1–2), 1–45 (2006)

    Article  ADS  Google Scholar 

  3. Charlaix, E., Crassous, J.: Adhesion forces between wetted solid surfaces. J. Chem. Phys. 122, 184701 (2005)

    Article  ADS  Google Scholar 

  4. Richefeu, V., el Youssoufi, M.S., Radjaï, F.: Shear strength properties of wet granualr materials. Phys. Rev. E 73, 051304 (2006)

    Article  ADS  Google Scholar 

  5. Charlaix, E., Ciccotti, M.: Chap. 12 capillary condensation in confined media. In: Sattler, K.D. (ed.) Handbook of Nanophysics: Principles and Methods. CRC Press, Boca Raton (2010)

    Google Scholar 

  6. Herminghaus, S.: Dynamics of wet granular matter. Adv. Phys. 54(3), 221–261 (2005)

    Article  ADS  Google Scholar 

  7. Schulz, M., Schulz, B.M., Herminghaus, S.: Shear-induced solid-fluid transition in a wet granular medium. Phys. Rev. E 67, 052301 (2003)

    Article  ADS  Google Scholar 

  8. Iveson, S., Wauters, P., Forrest, S., Litster, J., Meeters, G., Scarlett, B.: Growth regime map for liquid-bound granules: further development and experimental validation. Powder Technol. 117, 83–97 (2001)

    Article  Google Scholar 

  9. Hornbaker, D.J., Albert, R., Albert, I., Barabasi, A.L., Schiffer, P.: What keeps sandcastles standing? Nature 387, 765 (1997)

    Article  ADS  Google Scholar 

  10. Kohonen, M.M., Geromichalosb, D., Scheelb, M., Schierb, C., Herminghaus, S.: On capillary bridges in wet granular materials. Phys. A 339, 7–15 (2004)

    Article  Google Scholar 

  11. Tegzes, P., Albert, R., Paskvan, M., Barabasi, A., Vicsek, T., Schiffer, P.: Liquid-induced transitions in granular media. Phys. Rev. E 60(5), 5823–5826 (1999)

    Article  ADS  Google Scholar 

  12. Forny, L., Pezron, I., Guignon, P., Kounjer, L.: Peculiar absorption of water by hydrophobized glass beads. Coll. Surf. A: Physicochem. Eng. Aspects 270–271, 263–269 (2005)

    Article  Google Scholar 

  13. Crassous, J., Charlaix, E.: Nanoscale investigation fo wetting dynamics by a surface force apparatus. Phys. Rev. Lett. 78, 2425–2428 (1997)

    Article  ADS  Google Scholar 

  14. Bocquet, L., Charlaix, E., Castagno, F.: Physics of humid granular media. Phys. C.R. 3, 207–215 (2002)

    Article  Google Scholar 

  15. Restagno, F., Crassous, J., Cottin-Bizonne, C., Charlaix, E.: Adhesion between weakly rough beads. Phys. Rev. E 65, 042301 (2002)

    Article  ADS  Google Scholar 

  16. Restagno, F., Bocquet, L., Crassous, J., Charlaix, E.: Slow kinetics of capillary condensation in confined geometry: experiment and theory. Coll. Surf. A: Physicochem. Eng. Aspects 206, 69–77 (2002)

    Article  Google Scholar 

  17. Crassous, J., Ciccotti, M., Charlaix, E.: Capillary force between wetted nanometric contacts and its application to atomic force microscopy. Langmuir 27, 3468–3473 (2011)

    Article  Google Scholar 

  18. Gómez, I.: Caracterizacion higroscopica de materiales de construccion: arcilla aligerada y picon. Ph.D. thesis, Universidad del Pais Vasco (2006)

  19. Lian, G., Thornton, C., Adams, M.J.: Discrete particle simulation of agglomerate impact coalescence. Chem. Eng. Sci. 53(19), 3381–3391 (1998)

    Article  Google Scholar 

  20. Dong, K., Yand, R., Zou, R., Yu, A.: Role of interparticle forces in the formation of random loose packing. Phys. Rev. Lett. 96, 145505 (2006)

    Article  ADS  Google Scholar 

  21. Dong, K., Yand, R., Zou, R., Yu, A.: Settling of particles in liquids: effects of material properties. A.I.Ch.E. 58(5), 1409–1421 (2012)

    Article  Google Scholar 

  22. Yu, A., Feng, C., Zou, R., Yang, R.: On the relationship between porosity and interparticle forces. Powder Technol. 130, 70–76 (2003)

    Article  Google Scholar 

  23. Richefeu, V., el Youssoufi, M.S., Azéma, E., Radjaï, F.: Force transmission in dry and wet granualar media. Powder Technol. 190, 258–263 (2009)

    Article  Google Scholar 

  24. Soulié, F., Cherblanc, F., Youssoufin, M.S.E., Saix, C.: Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. Int. J. Numer. Anal. Meth. Geomech. 13, 213 (2006)

    Google Scholar 

  25. Anand, A., Curtis, J.S., Wassgren, C.R., Hancock, B.C., Ketterhagen, W.R.: Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (dem). Chem. Eng. Sci. 64, 5268–5275 (2009)

    Article  Google Scholar 

  26. Mikami, T., Kamiya, H., Horio, M.: Numerical simulation of cohesive powder behavior in a ßuidized bed. Chem. Eng. Sci. 53(10), 1927 (1998)

    Article  Google Scholar 

  27. Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30(5), 949–980 (1986)

    Article  ADS  Google Scholar 

  28. Savage, S.B.: Disorder diffusion and structure formation in granular flows. In: Bideau, D. (ed.) Disorder and Granular Media, pp. 255–287. North Holland, Amsterdam (1993)

    Google Scholar 

  29. Oger, L., Ippolito, I., Vidales, A.: How disorder can diminish avalanche risks: effect of size distribution. Granul. Matter 9, 267–278 (2007)

    Article  MATH  Google Scholar 

  30. Powell, M.J.: Computer-simulated random packing of spheres. Powder Technol. 25, 45–52 (1980)

    Article  Google Scholar 

  31. Janssen, H.A.: Versuche über Getreidedruck in Silozellen. Zeitschr. d. Vereines deutscher Ingenieure 39(35), 1045–1049 (1895)

  32. Lochmann, K., Oger, L., Stoyan, D.: Statistical analysis of random sphere packings with variable radius distribution. Solid State Sci. 8, 1397–1413 (2006)

    Google Scholar 

  33. Mint Babah, H.: Etude expérimentale de quelques aspects de la problématique des dunes éoliennes: des processus d’avalanche à la statigraphie des dunes. Ph.D. thesis, University of Rennes 1 (2010). http://www.sudoc.fr/146157036

  34. Nerone, N., Aguirre, M., Calvo, A., Ippolito, I., Bideau, D.: Surface fluctuation in a slowly driven granular system. Phys. A 283, 218–222 (2000)

    Article  Google Scholar 

  35. Nerone, N., Aguirre, M., Calvo, A., Bideau, D., Ippolito, I.: Instabilities in slowly driven granular packing. Phys. Rev. E 67, 011302 (2003)

    Google Scholar 

  36. Kiesgen de Richter, S., Le Caër, G., Delannay, R.: Dynamics of rearrangements during inclination of granular packings: theavalanche precursor regime. J. Stat. Mech. p. 04013 (2012)

Download references

Acknowledgments

L. Oger would like to thanks the Universidad Nacional de San Luis for the one month invitation as invited professor. A.M. Vidales, R.O. Uñac. and I. Ippolito want to thank CONICET support through the grant PIP No. 1022. We thanks Jean Pierre Hulin for fruitful discussions. This work is partially supported by the LIA Physique et Mécanique des Fluides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Oger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oger, L., Vidales, A.M., Uñac, R.O. et al. Tilting process with humidity: DEM modeling and comparison with experiments. Granular Matter 15, 629–643 (2013). https://doi.org/10.1007/s10035-013-0433-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0433-9

Keywords

Navigation