Skip to main content
Log in

Packing of fine particles in an electrical field

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A numerical model based on the Discrete Element Method (DEM) is developed to study the packing of fine particles in an electrical field related to the dust collection in an electrostatic precipitator (ESP). The particles are deposited to form a dust cake mainly under the electrical and van der Waals forces. It is shown that for the packing formed by mono-sized charged particles, increasing either particle size or applied electrical field strength increases packing density until reaching a limit corresponding to the density of random loose packing obtained under gravity. The corresponding structural changes are analyzed in terms of coordination number, radial distribution function and other topological and metric properties generated from the Voronoi tessellation. It is shown that these properties are similar to those for the packing under gravity. Such structural similarities result from the similar changes in the competition of the cohesive forces and the driving force in the packing. In particular, it is shown that by replacing the gravity with the electrical field force, the previous correlation between packing density and the ratio of the cohesive force to the packing-driven force can be applied to the packing of fine particles in ESP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Parker, K.R.: Applied Electrostatic Precipitation. Springer, Berlin (1997)

    Google Scholar 

  2. Jaworek, A., Krupa, A., Czech, T.: Modern electrostatic devices and methods for exhaust gas cleaning: A brief review. J. Electrost. 65(3), 133–155 (2007). doi:10.1016/j.elstat.2006.07.012

    Article  Google Scholar 

  3. Blanchard, D., Atten, P., Dumitran, L.M.: Correlation between current density and layer structure for fine particle deposition in a laboratory electrostatic precipitator. IEEE Trans. Ind. Appl. 38(3), 832–839 (2002)

    Article  Google Scholar 

  4. Neimarlija, N., Demirdzic, I., Muzaferija, S.: Finite volume method for calculation of electrostatic fields in electrostatic precipitators. J. Electrost. 67(1), 37–47 (2009)

    Article  Google Scholar 

  5. Kim, S.H., Lee, K.W.: Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models. J. Electrost. 48(1), 3–25 (1999)

    Article  Google Scholar 

  6. McLEAN, K., Kahane, R.: Electrical Performance Diagram for a Pilot Scale Electrostatic Precipitator. p. 207. Butterworth-Heinemann (1978)

  7. Ferge, T., Maguhn, J., Felber, H., Zimmermann, R.: Particle collection efficiency and particle re-entrainment of an electrostatic precipitator in a sewage sludge incineration plant. Environ. Sci. Technol 38(5), 1545–1553 (2004)

    Article  ADS  Google Scholar 

  8. Barranco, R., Gong, M., Thompson, A., Cloke, M., Hanson, S., Gibb, W., Lester, E.: The impact of fly ash resistivity and carbon content on electrostatic precipitator performance. Fuel 86(16), 2521–2527 (2007). doi:10.1016/j.fuel.2007.02.022

    Article  Google Scholar 

  9. Jedrusik, M., Swierczok, A.: The influence of fly ash physical and chemical properties on electrostatic precipitation process. J. Electrost. 67(2–3), 105–109 (2009). doi:10.1016/j.elstat.2008.12.014

    Article  Google Scholar 

  10. Soldati, A., Casal, M., Andreussi, P., Banerjee, S.: Lagrangian simulation of turbulent particle dispersion in electrostatic precipitators. Aiche J. 43(6), 1403–1413 (1997). doi:10.1002/aic.690430604

    Article  Google Scholar 

  11. Fujishima, H., Morita, Y., Okubo, M., Yamamoto, T.: Numerical simulation of three-dimensional electrohydrodynamics of spiked-electrode electrostatic precipitators. Dielectr. Electr. Insul. IEEE Trans. 13(1), 160–167 (2006)

    Article  Google Scholar 

  12. Farnoosh, N., Adamiak, K., Castle, G.S.P.: 3-D numerical analysis of EHD turbulent flow and mono-disperse charged particle transport and collection in a wire-plate ESP. J. Electrost. 68(6), 513–522 (2010). doi:10.1016/j.elstat.2010.07.002

    Article  Google Scholar 

  13. Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007). doi:10.1016/j.ces.2006.12.089

    Article  Google Scholar 

  14. Zhu, H., Zhou, Z., Yang, R., Yu, A.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008)

    Article  Google Scholar 

  15. Latham, J.P., Munjiza, A.: The modelling of particle systems with real shapes. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 362(1822), 1953 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, K.J., Zou, R.P., Yang, R.Y., Yu, A.B., Roach, G.: DEM simulation of cake formation in sedimentation and filtration. Miner. Eng. 22(11), 921–930 (2009). doi:10.1016/j.mineng.2009.03.018

    Article  Google Scholar 

  17. Cundall, P., Strack, O.: A discrete numerical model for granular assemblies. In: DAMES AND MOORE LONDON (ENGLAND) (1979)

  18. Dong, K.J., Yang, R.Y., Zou, R.P., Yu, A.B.: Settling of particles in liquids: effects of material properties. AIChE J. 58(5), 1409–1421 (2012). doi:10.1002/aic.12682

    Article  Google Scholar 

  19. Brilliantov, N.V., Spahn, F., Hertzsch, J.-M., ouml, schel, T.: Model for collisions in granular gases. Phys. Rev. E 53(5), 5382 (1996)

    Google Scholar 

  20. Schwager, T., Pöschel, T.: Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57(1), 650–654 (1998)

    Article  ADS  Google Scholar 

  21. Langston, P.A., Tüzün, U., Heyes, D.M.: Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chem. Eng. Sci. 50(6), 967–987 (1995). doi:10.1016/0009-2509(94)00467-6

    Article  Google Scholar 

  22. Mindlin, R.D., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. Trans. ASME 20(3), 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  23. Israelachvili, J.N.: Intermolecular and Surface Forces: Revised Third edition. Academic press, Waltham (2011)

    Google Scholar 

  24. White, H.J.: Particle charging in electrostatic precipitation. Am. Inst. Electr. Eng. Trans. 70(2), 1186–1191 (1951)

    Article  Google Scholar 

  25. Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)

  26. Ghadiri, M., Martin, C.M., Arteaga, P.A., Tüzün, U., Formisani, B.: Evaluation of the single contact electrical clamping force. Chem. Eng. Sci. 61(7), 2290–2300 (2006)

    Google Scholar 

  27. McLean, K.J.: Cohesion of precipitated dust layer in electrostatic precipitators. J. Air Pollut. Control Assoc. 27(11), 1100–1103 (1977)

    Google Scholar 

  28. Zhu, J.B., Zhang, X.M., Hu, H.W., Yan, K.P.: Characteristics of collected dust layer in a laboratory electrostatic precipitator. Rev. Sci. Technol. 26(9), 30–33 (2008)

    Google Scholar 

  29. Riehle, C.: Basic and theoretical operation of ESPs. In: Parker, K. (ed.) Applied Electrostatic Precipitation. Springer, Berlin (1997)

    Google Scholar 

  30. Dong, K.J., Yang, R.Y., Zou, R.P., Yu, A.B.: Role of interparticle forces in the formation of random loose packing. Phys. Rev. Lett. 96(14), 145505 (2006)

    Article  ADS  Google Scholar 

  31. Miller, J., Schmid, H.j., Schmidt, E., Schwab, A.J.: Local deposition of particles in a laboratory scale electrostatic precipitator with barbed discharge electrodes. In: Sixth International Conference on Electrostatic Precipitation, pp. 325–334. Budapest (1996)

  32. Yang, R.Y., Zou, R.P., Yu, A.B.: Computer simulation of the packing of fine particles. Phys. Rev. E 62(3), 3900 (2000)

    Article  ADS  Google Scholar 

  33. Batchelor, G.K., O’Brien, R.W.: Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 355(1682), 313–333 (1977)

    Article  ADS  Google Scholar 

  34. Zhou, Z., Yu, A., Zulli, P.: Particle scale study of heat transfer in packed and bubbling fluidized beds. Aiche J. 55(4), 868–884 (2009)

    Article  Google Scholar 

  35. Finney, J.L.: Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A Math. Phys. Sci. 319(1539), 479–493 (1970). doi:10.1098/rspa.1970.0189

    Article  ADS  Google Scholar 

  36. Xu, J., Zou, R., Yu, A.: Analysis of the packing structure of wet spheres by Voronoi–Delaunay tessellation. Granul. Matt. 9(6), 455–463 (2007). doi:10.1007/s10035-007-0052-4

    Article  Google Scholar 

  37. Yang, R.Y., Zou, R.P., Yu, A.B.: Voronoi tessellation of the packing of fine uniform spheres. Phys. Revi. E 65(4), 041302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  38. Yang, R.Y., Zou, R.P., Yu, A.B.: Effect of material properties on the packing of fine particles. J. Appl. Phys. 94(5), 3025–3034 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge that this work is financially sponsored by Australian Research Council and Fujian Longking Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aibing Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Dong, K., Zou, R. et al. Packing of fine particles in an electrical field. Granular Matter 15, 467–476 (2013). https://doi.org/10.1007/s10035-013-0410-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0410-3

Keywords

Navigation