Skip to main content
Log in

DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The importance of particle rotation to the mechanical behavior of granular materials subject to quasi-static shearing has been well recognized in the literature. Although the physical source of the resistance to particle rotation is known to lie in the particle surface topography, it has been conveniently studied using the rolling resistance model installed typically on spherical particles within the DEM community. However, there has been little effort on assessing the capability of the rolling resistance model to produce more realistic particle rotation behavior as exhibited by irregular-shaped particles. This paper aims to eliminate this deficiency by making a comprehensive comparison study on the micromechanical behavior of assemblies of irregular-shaped particles and spherical particles installed with the rolling resistance model. A variety of DEM analysis techniques have been applied to elucidate the full picture of micromechanical processes occurring in the two types of granular materials with different particle-level anti-rotation mechanisms. Simulation results show that the conventional rheology-type rolling resistance models cannot reproduce the particle rotation and strain localization behavior as displayed by irregular-shaped materials, although they demonstrate clear effects on the macroscopic strength and dilatancy behavior, as have been adequately documented in the literature. More insights into the effects of particle-level anti-rotation mechanism are gained from an in-depth inter-particle energy dissipation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. ASCE 124, 285–292 (1998)

    Article  Google Scholar 

  2. Kuhn, M.R., Katalin, B.: Contact rolling and deformation in granular media. Int. J. Solids Struct. 41(21), 5793–5820 (2004)

    Article  MATH  Google Scholar 

  3. Alonso-Marroquin, F., Vardoulakis, I., Herrmann, H.J., Weatherley, D., Mora, P.: Effect of rolling on dissipation in fault gouges. Phys. Rev. E 74(3), 031306 (2006)

    Article  ADS  Google Scholar 

  4. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granul. Matter 12, 527–541 (2010)

    Article  Google Scholar 

  5. Tordesillas, A., Walsh, D.C.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124(1), 106–111 (2002)

    Article  Google Scholar 

  6. Zhang, W.C., Wang, J.F., Jiang, M.J.: DEM-aided discovery of the relationship between energy dissipation and shear band formation considering the effects of particle rolling resistance. J. Geotech. Geoenviron. Eng., online first (2013). doi:10.1061/(ASCE)GT.1943-5606.0000890

  7. Astrom, J.A., Timonen, J.: Spontaneous formation of densely packed shear bands of rotating fragments. Eur. Phys. J. E 35(40), 1–5 (2012)

    Google Scholar 

  8. Holubec, I., D’Appolonia, E.: Effect of particle shape on the engineering properties of granular soils. Am. Soc. Test. Mater. ASTM STP 523, 304–318 (1973)

    Google Scholar 

  9. Guo, P., Su, X.: Shear strength, interparticle locking, and dilatancy of granuar materials. Can. Geotech. J 44(5), 579–591 (2007)

    Google Scholar 

  10. Tsomokos, A., Georgiannou, V.N.: Effect of grain shape and angularity on the undrained response of fine sands. Can. Geotech. J. 47(5), 539–551 (2010)

    Google Scholar 

  11. Cundall, P.A., Strack, O.D.: A discrete numerical-model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  12. Emeriault, F., Chang, C.S.: Interparticle forces and displacements in granular materials. Comput. Geotech. 20(3–4), 223–244 (1997)

    Google Scholar 

  13. Sitharam, T.G.: Micromechanical modeling of granular materials: effect of confining pressure on mechanical behavior. Mech. Mater. 31(10), 653–665 (1999)

    Article  Google Scholar 

  14. Liu, S.H., Matsuoka, H.: Microscopic interpretation on a stress–dilatancy relationship of granular materials. Soils Found. 43(3), 73–84 (2003)

    Article  Google Scholar 

  15. Wang, J., Gutierrez, M.S.: Discrete element simulations of direct shear specimen scale effects. Géotechnique 60(5), 395–409 (2010)

    Article  Google Scholar 

  16. Guo, P.: Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech. 7, 41–55 (2012)

    Article  Google Scholar 

  17. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109, 192–205 (2000)

    Google Scholar 

  18. Jiang, M.J., Yu, H.S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32, 340–357 (2005)

    Google Scholar 

  19. Ai, J., Chen, J., Rotter, J.M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206, 269–282 (2011)

    Google Scholar 

  20. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)

    Article  Google Scholar 

  21. Nouguier-Lehon, C., Cambou, B., Vincens, E.: Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Methods Geomech. 27, 1207–1226 (2003)

    Article  MATH  Google Scholar 

  22. Nouguier-Lehon, C.: Effect of the grain elongation on the behaviour of granular materials in biaxial compression. Computes Rendus Mecanique 338, 587–595 (2010)

    Google Scholar 

  23. Antonya, S.J., Momoha, R.O., Kuhnb, M.R.: Micromechanical modelling of oval particulates subjected to bi-axial compression. Comput. Mater. Sci. 29, 494–498 (2004)

    Article  Google Scholar 

  24. Mahmood, Z., Iwashita, K.: Influence of inherent anisotropy on mechanical behavior of granular materials based on DEM simulations. Int. J. Numer. Anal. Methods Geomech. 34, 795–819 (2010)

    Google Scholar 

  25. Mahmood, Z., Iwashita, K.: A simulation study of microstructure evolution inside the shear band in biaxial compression test. Int. J. Numer. Anal. Methods Geomech. 35, 652–667 (2011)

    Article  Google Scholar 

  26. Abedi, S., Mirghasemi, A.A.: Particle shape consideration in numerical simulation of assemblies of irregularly shaped particles. Particulology 9, 387–397 (2011)

    Article  Google Scholar 

  27. Estrada, N., Azema, E., Radjai, F.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84(1), 011306 (2011)

    Article  ADS  Google Scholar 

  28. Favier, J.F., et al.: Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multi-element model particles. Eng. Comput. 16(4), 467–480 (1999)

    Article  MATH  Google Scholar 

  29. Matuttis, H.G., Luding, S., Herrmann, H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  30. Bagherzadeh-Khalkhali, A., Mirghasemi, A.A., Mohammadi, S.: Micromechanics of breakage in sharp-edge particles using combined DEM and FEM. Particuolagy 6, 347–361 (2008)

    Google Scholar 

  31. Bagherzadeh-Khalkhali, A., Mirghasemi, A.A.: Numerical and experimental direct shear tests for coarse-grained soils. Particuolagy 7, 83–91 (2009)

    Article  Google Scholar 

  32. Alonso-Marroquin, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71, 051304 (2005)

    Article  ADS  Google Scholar 

  33. Alonso-Marroquin, F.: Spheropolygons: a new method to simulate conservative and dissipative interactions between 2D complex-shaped rigid bodies. Europhys. Lett. 83, 14001 (2008)

    Article  ADS  Google Scholar 

  34. Alonso-Marroquín, F., Wang, Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11, 317–329 (2009)

    Article  MATH  Google Scholar 

  35. Galindo-Torres, S.A., Munoz, J.D., Alonso-Marroquin, F.: Minkowski-Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Phys. Rev. E 82, 056713 (2010)

    Google Scholar 

  36. Ashmawy, A.K., Sukumaran, B., Hoang, V.V.: Evaluating the influence of particle shape on liquefaction behavior using discrete element modeling. In: Proceedings of The 13th (2003) International Offshore And Polar Enginerring Conference, vol. 2, pp. 542–549 (2003)

  37. Riley, N.A.: Projection sphericity. J. Sediment. Petrol 11, 94–97 (1941)

    Google Scholar 

  38. Blott, S.J., Pye, K.: Particle shape: a review and new methods of characterization and classification. Sedimentology 55(1), 31–63 (2008)

    Google Scholar 

  39. Sukumaran, B., Ashmawy, A.K.: Quantitative characterisation of the geometry of discrete particles. Geotechnique 51(7), 619–627 (2001)

    Google Scholar 

  40. Bardet, J.P., Huang, Q.: Rotational stiffness of cylindrical particle contacts. In: Proceeding on 2nd International Conference on Micromechanics of Granular, Media, pp. 39–43 (1993)

  41. Sakaguchi, H., Ozaki, E., Igarashi, T.: Plugging of the flow of granular materials during the discharge from a silo. Int. J. Mod. Phys. B 7, 1949–1963 (1993)

    Article  ADS  Google Scholar 

  42. Itasca: PFC2D Manual (Version 4.0). Itasca Consulting Group Inc, Minneapolis (2008)

  43. Astrom, J.A., Herrmann, H.J., Timonen, J.: Granular packings and fault zones. Phys. Rev. Lett. 84(4), 638–641 (2000)

    Article  ADS  Google Scholar 

  44. Alonso-Marroquin, F., Herrmann, H.J.: Calculation of the incremental stress–strain relation of a polygonal packing. Phys. Rev. E 66(2), 021301 (2002)

    Article  ADS  Google Scholar 

  45. Wang, Y.H., Leung, S.C.: Characterization of cemented sand by experimental and numerical investigations. J. Geotech. Geoenviron. Eng. ASCE 134(7), 992–1004 (2008)

    Article  Google Scholar 

  46. Wang, J., Yan, H.B.: On the role of particle breakage in the shear failure behavior of granular soils by DEM. Int. J. Numer. Anal. Methods Geomech, Online first (2011). doi:10.1002/nag

  47. Wang, J., Yan, H.B.: DEM analysis of energy dissipation in crushable soils. Soils Found. 52(4), 644–657 (2012)

    Google Scholar 

  48. Bolton, M.D., Nakata, Y., Cheng, Y.P.: Micro-and macro-mechanical behavior of DEM crushable materials. Geotechnique 58(6), 471–480 (2008)

    Article  Google Scholar 

  49. Wang, J., Gutierrez, M.S., Dove, J.E.: Numerical studies of shear banding in interface shear tests using a new strain calculation method. Int. J. Numer. Anal. Meth. Geomech. 31(12), 1349–1366 (2007a)

    Article  MATH  Google Scholar 

  50. Wang, J., Dove, J.E., Gutierrez, M.S.: Discrete-continuum analysis of shear band in the direct shear test. Géotechnique 57(6), 527–536 (2007b)

    Article  Google Scholar 

  51. Wang, J., Jiang, M.J.: Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries. Granul. Matter 13(5), 631–641 (2011)

    Article  Google Scholar 

  52. Azema, A., Radja, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85, 031303 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Science Foundation of China for Young Investigators with Grant No. 51109182, Research Grant No. SKLGP2012K019 from the State Key Laboratory of Geohazard Prevention and Geo-environment Protection of Chengdu University of Technology, Strategic Research Grant No. 7008180 from City University of Hong Kong, Grant No. 2012BAK10B00 from Ministry of National Science and Technology and Key Program No. 2009CDA007 of Natural Science Foundation of Hubei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Huang, R., Wang, H. et al. DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter 15, 315–326 (2013). https://doi.org/10.1007/s10035-013-0409-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0409-9

Keywords

Navigation