Skip to main content

Advertisement

Log in

Influence of the gravity on the discharge of a silo

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We performed a series of experiments to investigate the flow of an assembly of non-cohesive spherical grains in both high and low gravity conditions (i.e. above and under the Earth’s gravity). In high gravity conditions, we studied the flow of glass beads out of a cylindrical silo and the flow of metallic beads out of a vertical Hele-Shaw rectangular silo. Both silos were loaded in one of the gondolas of the large diameter centrifuge facility (located at ESTEC) in which an apparent gravity up to 20 times the Earth’s gravity can be established. To simulate low gravity conditions, we submitted a horizontal monolayer of metallic beads to the centrifuge force of a small rotation device (located at University of Liege). The influences of both gravity and aperture size on the mass flow were analysed in these various conditions. For the three systems (cylindrical silo, the Hele-shaw silo and the monolayer of beads), we demonstrated that (i) the square root scaling of the gravity found by Beverloo is relevant and (ii) the critical aperture size below which the flow is jammed does not significantly increase with the apparent gravity. Moreover, we studied in more details the Hele-Shaw silo in high gravity because this configuration allowed to determine local properties of the flow at the level of the aperture. We measured the velocity profiles and the packing fraction profiles for the various aperture sizes and apparent high gravities. We demonstrate the existence of a slip length for the flow at the level of the aperture. This later fact seems to result from the geometrical configuration of the silo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. François Huber-Burnand (1750–1831) was blind since he was 15. He was helped by his domestic François Burnens during his experiments in Yverdon-les-Bains (Switzerland).

References

  1. Scheeres, D.J., Hartzell, C.M., Sánchez, P., Swift, M.: Scaling forces to asteroid surfaces: the role of cohesion. Icarus 210, 968–984 (2010)

    Google Scholar 

  2. Arndt, T., Brucks, A., Ottino, J.M., Lueptow, R.M.: Creeping granular motion under variable gravity levels. Phys. Rev. E 74, 031307 (2006)

    Article  ADS  Google Scholar 

  3. Brucks, A., Arndt, T., Ottino, J.M., Lueptow, R.M.: Behavior of flowing granular materials under variable g. Phys. Rev. E 75, 032301 (2007)

    Article  ADS  Google Scholar 

  4. Kleinhans, M.G., Markies, H., de In’t Vet, S.J., Postema, F.N.: Postema, static and dynamic angles of repose in loose granular materials under reduced gravity. J. Geophys. Res. 116, E11004 (2011)

    Article  ADS  Google Scholar 

  5. Dorbolo, S., Scheller, T., Ludewig, F., Lumay, G., Vandewalle, N.: Influence of a reduced gravity on the volume fraction of a monolayer of spherical grains. Phys. Rev. E 84, 041305 (2011)

    Article  ADS  Google Scholar 

  6. http://www.youtube.com/watch?v=twlSIdZufTs

  7. Huber-Burnand, F.: Sur l’ écoulement et la pression du sable. Ann. de Chimie et de Physique 50, 159–173 (1829); Lieut. T.S. Brown, Experiments on the resistance of sand to motion through tubes, with especial reference to its use in the blasting of rocks, made at Fort Adams, Newport harbour, under the direction of Col. Totten, translated in English, F. Huber-Burnand, J. Franklin Inst. 22, 1–8 (1836)

  8. Beverloo, W.A., Leninger, H.A., van de Valde, J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)

    Article  Google Scholar 

  9. Vanel, L., Claudin, Ph, Bouchaud, J.-P., Cates, M.E., Clément, E., Wittmer, J.P.: Stresses in silos: comparison between theoretical models and new experiments. Phys. Rev. Lett. 84, 1439–1442 (2000)

    Article  ADS  Google Scholar 

  10. Bertho, Y., Giorgiutti-Dauphiné, F., Hulin, J.P.: Dynamical Janssen effect on granular packing with moving walls. Phys. Rev. Lett. 90, 144301 (2003)

    Article  ADS  Google Scholar 

  11. Pacheco-Martinez, H., van Gerner, H.J., Ruiz-Suárez, J.C.: Storage and discharge of a granular fluid. Phys. Rev. E 77, 021303 (2008)

    Article  ADS  Google Scholar 

  12. De-Song, B., Xun-Sheng, Z., Guang-Lei, X., Zheng-Quan, P., Xiao-Wei, T., Kun-Quan, L.: Critical phenomenon of granular flow on a conveyor belt. Phys. Rev. E 67, 062301 (2003)

    Article  ADS  Google Scholar 

  13. Aguirre, M.A., Grande, J.G., Calvo, A., Pugnaloni, L.A., Géminard, J.C.: Pressure independence of granular flow through an aperture. Phys. Rev. Lett. 104, 238002 (2010)

    Google Scholar 

  14. Aguirre, M.A., Grande, J.G., Calvo, A., Pugnaloni, L.A., Géminard, J.C.: Granular flow through an aperture: pressure and flow rate are independent. Phys. Rev. E 83, 061305 (2011)

    Google Scholar 

  15. Perge, C., Aguirre, M.A., Gago, P.A., Pugnaloni, L.A., Le Tourneau, D., Géminard, J.C.: Evolution of pressure profiles during the discharge of a silo. Phys. Rev. E 85, 021303 (2012)

  16. Zuriguel, I., Pugnaloni, L.A., Garcimartín, A., Maza, D.: Jamming during the discharge of grains from a silo described as a percolating transition. Phys. Rev. E 68, 030301 (R) (2003)

    Article  ADS  Google Scholar 

  17. Mankoc, C., Janda, A., Arévalo, R., Pastor, J.M., Zuriguel, I., Garcimartín, A., Maza, D.: The flow rate of granular materials through an orifice. Granul. Matter 9, 407–414 (2007)

    Google Scholar 

  18. Janda, A., Zuriguel, I., Garcimartín, A., Pugnaloni, L.A., Maza, D.: Jamming and critical outlet size in the discharge of a two-dimensional silo. Europhys. Lett. 84, 44002 (2008)

    Google Scholar 

  19. Lumay, G., Vandewalle, N.: Controlled flow of smart powders. Phys. Rev. E 78, 061302 (2008)

    Article  ADS  Google Scholar 

  20. Mersch, E., Lumay, G., Boschini, F., Vandewalle, N.: Effect of an electric field on an intermittent granular flow. Phys. Rev. E 81, 041309 (2010)

    Article  ADS  Google Scholar 

  21. Bertho, Y., Becco, C., Vandewalle, N.: Dense bubble flow in a silo: an unusual flow of a dispersed medium. Phys. Rev. E 73, 056309 (2006)

    Article  ADS  Google Scholar 

  22. Janda, A., Maza, D., Garcimartín, A., Kolb, E., Lanuza, J., Clément, E.: Unjamming a granular hopper by vibration. Europhys. Lett. 87, 24002 (2009)

    Article  ADS  Google Scholar 

  23. Zuriguel, I., Janda, A., Garcimartín, A., Lozano, C., Arévalo, R.: Silo clogging reduction by the presence of an obstacle. Phys. Rev. Lett. 107, 278001 (2011)

    Article  ADS  Google Scholar 

  24. Janda, A., Zuriguel, I., Maza, D.: Flow rate of particles through apertures obtained from self-similar ensity and velocity profiles. Phys. Rev. Lett. 108, 248001 (2012)

    Article  ADS  Google Scholar 

  25. Garcimartín, A., Zuriguel, I., Pugnaloni, L.A., Janda, A.: Shape of jamming arches in two-dimensional deposits of granular materials. Phys. Rev. E 82, 031306 (2010)

    Article  ADS  Google Scholar 

  26. Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R.C., Garcimartín, A.: Breaking arches with vibrations: the role of defects. Phys. Rev. Lett. 109, 068001 (2012)

    Article  ADS  Google Scholar 

  27. SiLibeads, Sigmund-Lindner, Type S, roundness > 0.89 %

  28. ZEUGMA, Tecnologia de Sistemas Inudstriais, Lda, large Diameter Centrifuge vibrations measurement and analysis (97278001B1), August 2011

  29. Janda, A., Harich, R., Zuriguel, I., Maza, D., Cixous, P., Garcimartín, A.: Flow-rate fluctuations in the outpouring of grains from a two-dimensional silo. Phys. Rev. E 79, 031302 (2009)

    Article  ADS  Google Scholar 

  30. Midi, G.D.R.: On dense granular flows. Europhys. J. E 14, 341–365 (2004)

    Google Scholar 

  31. Sakaie, K., Fenistein, D., Carroll, T.J., Van Hecke, M., Umbanhowar, P.: MR imaging of Reynolds dilatancy in the bulk of smooth granular flows. Europhys. Lett. 84, 49902 (2008)

    Google Scholar 

  32. Bazant, M.Z.: The spot model for random-packing dynamics. Mech. Mater. 38, 717–731 (2006)

    Article  ADS  Google Scholar 

  33. Rycroft, C.H., Bazant, M.Z., Landry, J., Grest, G.S.: Dynamics of random packings in granular flow. Phys. Rev. E 73, 051306 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

S.D. and G.L. thanks FNRS for financial support. Part of this work was supported by Université de Liège (Credit voyage etudiant and Bourse Post-Doc). The authors would like to thank the European Space Agency for the access to the Large Diameter Centrifuge in ESTEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dorbolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorbolo, S., Maquet, L., Brandenbourger, M. et al. Influence of the gravity on the discharge of a silo. Granular Matter 15, 263–273 (2013). https://doi.org/10.1007/s10035-013-0403-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0403-2

Keywords

Navigation