Granular Matter

, Volume 15, Issue 1, pp 25–38 | Cite as

The influence of end walls on the segregation pattern in a horizontal rotating drum

  • M. M. H. D. Arntz
  • W. K. den Otter
  • H. H. Beeftink
  • R. M. Boom
  • W. J. Briels
Original Paper


The influence of end walls on segregation of bidisperse granular beds in a short rotating horizontal drum is studied by a discrete element method. Whereas non-closed periodically continued drums segregate radially, all simulations of drums with end walls resulted in axial segregation with two bands at low friction between the particles and the end-wall, and three bands at high friction. Various simulations show irregular transitions between two approximately equally stable states, with rapid oscillations preceding the conversions. The formation of two axial bands decreases the energy dissipation by the bed, whereas neither radial segregation nor axial segregation into three bands reduced the power absorption at constant angular velocity. Roughening up the end-walls also increased the rate of axial segregation.


Axial segregation End walls End caps Oscillations Drum 


  1. 1.
    Di Renzo, A., Di Maio, F.P.: Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59(3), 525–541 (2004)CrossRefGoogle Scholar
  2. 2.
    Khakhar, D.V., Orpe, A.V., Hajra, S.K.: Segregation of granular materials in rotating cylinders. Phys. A 318(1–2), 129–136 (2003)Google Scholar
  3. 3.
    Turner, J.L., Nakagawa, M.: Particle mixing in a nearly filled horizontal cylinder through phase inversion. Powder Technol. 113(1–2), 119–123 (2000)CrossRefGoogle Scholar
  4. 4.
    Mellmann, J.: The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technol. 118(3), 251–270 (2001)CrossRefGoogle Scholar
  5. 5.
    Nakagawa, M., Altobelli, S.A., Caprihan, A., Fukushima, E., Jeong, E.K.: Noninvasive measurements of granular flows by magnetic-resonance-imaging. Exp. Fluids 16(1), 54–60 (1993)CrossRefGoogle Scholar
  6. 6.
    Maneval, J.E., Hill, K.M., Smith, B.E., Caprihan, A., Fukushima, E.: Effects of end wall friction in rotating cylinder granular flow experiments. Granul. Matter 7(4), 199–202 (2005)CrossRefGoogle Scholar
  7. 7.
    Pohlman, N.A., Meier, S.W., Lueptow, R.M., Ottino, J.M.: Surface velocity in three-dimensional granular tumblers. J. Fluid Mech. 560, 355–368 (2006)ADSMATHCrossRefGoogle Scholar
  8. 8.
    Pohlman, N.A., Ottino, J.M., Lueptow, R.M.: End-wall effects in granular tumblers: from quasi-two-dimensional flow to three-dimensional flow. Phys. Rev. E 74(3), 031305 (2006)Google Scholar
  9. 9.
    Chen, P.F., Ottino, J.M., Lueptow, R.M.: Subsurface granular flow in rotating tumblers: A detailed computational study. Phys. Rev. E 78(2), 021303 (2008)Google Scholar
  10. 10.
    Caps, H., Michel, R., Lecocq, N., Vandewalle, N.: Long lasting instabilities in granular mixtures. Phys. A Stat. Mech. Appl. 326(3–4), 313–321 (2003)CrossRefGoogle Scholar
  11. 11.
    Fiedor, S.J., Ottino, J.M.: Dynamics of axial segregation and coarsening of dry granular materials and slurries in circular and square tubes. Phys. Rev. Lett. 91(24), 244301 (2003)Google Scholar
  12. 12.
    Hill, K.M., Kakalios, J.: Reversible axial segregation of binary-mixtures of granular-materials. Phys. Rev. E 49(5), R3610–R3613 (1994)Google Scholar
  13. 13.
    Ottino, J.M., Khakhar, D.V.: Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 55–91 (2000)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Hill, K.M., Kakalios, J.: Reversible axial segregation of rotating granular media. Phys. Rev. E 52(4), 4393–4400 (1995)Google Scholar
  15. 15.
    Arntz, M.M.H.D., den Otter, W.K., Beeftink, H.H., Bussmann, P.J.T., Briels, W.J., Boom, R.M.: Granular mixing and segregation in a horizontal rotating drum: a simulation study on the impact of rotational speed and fill level. AIChE J. 54(12), 3133–3146 (2008)CrossRefGoogle Scholar
  16. 16.
    Nakagawa, M., Altobelli, S.A., Caprihan, A., Fukushima, E.: NMRI study: axial migration of radially segregated core of granular mixtures in a horizontal rotating cylinder. Chem. Eng. Sci. 52(23), 4423–4428 (1997)CrossRefGoogle Scholar
  17. 17.
    Newey, M., Ozik, J., Van der Meer, S.M., Ott, E., Losert, W.: Band-in-band segregation of multidisperse granular mixtures. Europhys. Lett. 66(2), 205–211 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Taberlet, N., Losert, W., Richard, P.: Understanding the dynamics of segregation bands of simulated granular material in a rotating drum. Europhys. Lett. 68(4), 522–528 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Alexander, A., Muzzio, F.J., Shinbrot, T.: Effects of scale and inertia on granular banding segregation. Granul. Matter 5(4), 171–175 (2004)CrossRefGoogle Scholar
  20. 20.
    Chicharro, R., Peralta-Fabi, R., Velasco, R.: Segregation in dry granular systems. In: Behringer, R., Jenkins, J. (eds.) Powders and Grains ’97, p. 479. A.A. Balkema, Rotterdam (1997)Google Scholar
  21. 21.
    Rapaport, D.C.: Simulational studies of axial granular segregation in a rotating cylinder. Phys. Rev. E 65(6), 061306 (2002)Google Scholar
  22. 22.
    Taberlet, N., Newey, M., Richard, P., Losert, W.: On axial segregation in a tumbler: an experimental and numerical study. J. Stat. Mech., P07013. doi:10.1088/1742-5468/2006/07/p07013 (2006)
  23. 23.
    Cundall, P.A., Strack, O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979)Google Scholar
  24. 24.
    Cleary, P.W.: Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner. Eng. 11(11), 1061–1080 (1998)CrossRefGoogle Scholar
  25. 25.
    Dury, C.M., Ristow, G.H.: Competition of mixing and segregation in rotating cylinders. Phys. Fluids 11(6), 1387–1394 (1999)ADSMATHCrossRefGoogle Scholar
  26. 26.
    Schutyser, M.A.I., Weber, F.J., Briels, W.J., Boom, R.M., Rinzema, A.: Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation. Biotechnol Bioeng 79(3), 284–294 (2002)CrossRefGoogle Scholar
  27. 27.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford Science Publications, Oxford (1987) Google Scholar
  28. 28.
    Atkins, P., Paula, J.D.: Phys. Chem., 9th edn. Oxford University Press, Oxford (2010)Google Scholar
  29. 29.
    Aranson, I.S., Tsimring, L.S.: Dynamics of axial separation in long rotating drums. Phys. Rev. Lett. 82(23), 4643–4646 (1999)Google Scholar
  30. 30.
    Choo, K., Molteno, T.C.A., Morris, S.W.: Traveling granular segregation patterns in a long drum mixer. Phys. Rev. Lett. 79(16), 2975–2978 (1997)Google Scholar
  31. 31.
    Rapaport, D.C.: Radial and axial segregation of granular matter in a rotating cylinder: a simulation study. Phys. Rev. E 75(3), 031301 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. M. H. D. Arntz
    • 1
  • W. K. den Otter
    • 2
    • 3
  • H. H. Beeftink
    • 4
  • R. M. Boom
    • 1
  • W. J. Briels
    • 2
  1. 1.Food Process EngineeringWageningen UniversityWageningenThe Netherlands
  2. 2.Computational BioPhysics, MESA+ Institute for Nanotechnology and Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.Multi Scale Mechanics, MESA+ Institute for Nanotechnology and Faculty of Engineering TechnologyUniversity of TwenteEnschedeThe Netherlands
  4. 4.Bioprocess EngineeringWageningen UniversityWageningenThe Netherlands

Personalised recommendations