Granular Matter

, Volume 14, Issue 5, pp 553–561 | Cite as

Avalanches on a conical bead pile: scaling with tuning parameters

  • S. Y. Lehman
  • Elizabeth Baker
  • Howard A. Henry
  • Andrew J. Kindschuh
  • Larry C. Markley
  • Megan B. Browning
  • Mary E. Mills
  • R. Michael WintersIV
  • D. T. Jacobs
Original Paper


Uniform spherical beads were used to explore the scaling behavior of a granular system near its critical angle of repose on a conical 3D bead pile. We found two tuning parameters that could take the system to a critical point. The existence of those tuning parameters violates the fundamental assumption of self-organized criticality, which proposed that complex dynamical systems self-organize to a critical point without need for tuning. Our avalanche size distributions were well described by a simple power-law, as is characteristic of a critical point, with the power τ = 1.5 when dropping beads slowly onto the apex of a bead pile from a small height. However, we could also move the system from the critical point using either of two tuning parameters: the height from which the beads fell onto the top of the pile or the region over which the beads struck the pile. As the drop height increased, the system did not reach the critical point yet the resulting distributions were independent of the bead mass, coefficient of friction, or coefficient of restitution. All our apex-dropping distributions for any type of bead (glass, stainless steel, zirconium) showed universality by scaling onto a common curve with τ = 1.5 and σ = 1.0, where 1/σ is the power of the tuning parameter. From independent calculations using the moments of the distribution, we find values for τ = 1.6 ± 0.1 and σ = 0.91 ± 0.15. When beads were dropped across the surface of the pile instead of solely on the apex, then the system also moved from the critical point and again the avalanche size distributions fell on a common curve when scaled similarly using the same values of τ and σ. We also observed that an hcp structure on the base of the pile caused an emergent structure in the pile that had six faces with some fcc or hcp structure; this structure did not affect the distribution of avalanche sizes.


Bead pile Avalanches Scaling behavior Granular material Universality Critical behavior Critical exponents Self-organized criticality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bak P.: How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York, NY, USA (1996)zbMATHGoogle Scholar
  2. 2.
    Bak P., Tang C., Wiesenfeld K.: Self-organized criticality. Phys. Rev. A 38(1), 364–374 (1988)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Jaeger H.M., Nagel S.R.: Physics of the granular state. Science 255(5051), 1523–1531 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Widom B.: Theory of phase equilibrium. J. Phys. Chem. 100(31), 13190–13199 (1996)CrossRefGoogle Scholar
  5. 5.
    Fisher M.E.: Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70(2), 653–681 (1998)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Greer S.C., Moldover M.R.: Thermodynamic anomalies at critical-points of fluids. Ann. Rev. Phys. Chem. 32, 233–265 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    Kumar A., Krishnamurthy H.R., Gopal E.S.R.: Equilibrium critical phenomena in binary-liquid mixtures. Phys. Rep. Rev. Sect. Phys. Lett. 98(2), 57–143 (1983)Google Scholar
  8. 8.
    Lauritsen K.B., Zapperi S., Stanley H.E.: Self-organized branching processes: avalanche models with dissipation. Phys. Rev. E 54(3), 2483–2488 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Zapperi S., Lauritsen K.B., Stanley H.E.: Self-organized branching-processes—mean-field theory for avalanches. Phys. Rev. Lett. 75(22), 4071–4074 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Le Doussal P., Wiese K.J.: Size distributions of shocks and static avalanches from the functional renormalization group. Phys. Rev. E 79(5), 051106 (2009)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Lubeck S., Usadel K.D.: Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension. Phys. Rev. E 56(5), 5138–5143 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Bak P., Christensen K., Danon L., Scanlon T.: Unified scaling law for earthquakes. Phys. Rev. Lett. 88(17), 178501 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Gutenberg B., Richter C.F.: Magnitude and energy of earthquakes. Ann. Geophys. 9, 1–15 (1956)Google Scholar
  14. 14.
    Pajevic S., Plenz D.: Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches. PLOS Comput. Biol. 5(1), e1000271 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gabaix X., Gopikrishnan P., Plerou V., Stanley H.E.: A theory of power-law distributions in financial market fluctuations. Nature 423(6937), 267–270 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Jaeger H.M., Liu C.H., Nagel S.R.: Relaxation at the angle of repose. Phys. Rev. Lett. 62(1), 40–43 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    Evesque P.: Analysis of the statistics of sandpile avalanches using soil-mechanics results and concepts. Phys. Rev. A 43(6), 2720–2740 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    Evesque P., Fargeix D., Habib P., Luong M.P., Porion P.: Pile density is a control parameter of sand avalanches. Phys. Rev. E 47(4), 2326–2332 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    Morales-Gamboa E., Lomnitz-Adler J., Romero-Rochin V., Chicharro-Serra R., Peralta-Fabi R.: Two-dimensional avalanches as stochastic Markov processes. Phys. Rev. E 47(4), R2229–R2231 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Christensen K., Corral A., Frette V., Feder J., Jossang T.: Tracer dispersion in a self-organized critical system. Phys. Rev. Lett. 77(1), 107–110 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Frette V., Christensen K., Malthe-Sorenssen A., Feder J., Jossang T., Meakin P.: Avalanche dynamics in a pile of rice. Nature 379(6560), 49–52 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Altshuler E., Ramos O., Martinez C., Flores L.E., Noda C.: Avalanches in one-dimensional piles with different types of bases. Phys. Rev. Lett. 86(24), 5490–5493 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Aegerter C.M., Gunther R., Wijngaarden R.J.: Avalanche dynamics, surface roughening, and self-organized criticality: Experiments on a three-dimensional pile of rice. Phys. Rev. E 67(5), 051306 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Lorincz K.A., Wijngaarden R.J.: Edge effect on the power law distribution of granular avalanches. Phys. Rev. E 76(4), 040301 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Held G.A., Solina D.H., Keane D.T., Haag W.J., Horn P.M., Grinstein G.: Experimental study of critical-mass fluctuations in an evolving sandpile. Phys. Rev. Lett. 65(9), 1120–1123 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    Rosendahl J., Vekic M., Kelley J.: Persistent self-organization of sandpiles. Phys. Rev. E 47(2), 1401–1404 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Rosendahl J., Vekic M., Rutledge J.E.: Predictability of large avalanches on a sandpile. Phys. Rev. Lett. 73(4), 537–540 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Costello R.M., Cruz K.L., Egnatuk C., Jacobs D.T., Krivos M.C., Louis T.S., Urban R.J., Wagner H.: Self-organized criticality in a bead pile. Phys. Rev. E 67(4), 041304 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Albert R., Albert I., Hornbaker D., Schiffer P., Barabási A.-L.: Maximum angle of stability in wet and dry spherical granular media. Phys. Rev. E 56(6), R6271–R6274 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    Ghaffari P., Lise S., Jensen H.J.: Nonconservative sandpile models. Phys. Rev. E 56(6), 6702–6709 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Dahmen K.A., Ben-Zion Y., Uhl J.T.: Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches. Phys. Rev. Lett. 102(17), 175501 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Sethna J.P., Dahmen K.A., Myers C.R.: Crackling noise. Nature 410(6825), 242–250 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    Liu Y., Dahmen K.A.: Random-field Ising model in and out of equilibrium. EPL 86(5), 56003 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Daerr A., Douady S.: Two types of avalanche behaviour in granular media. Nature 399(6733), 241–243 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    Borzsonyi T., Halsey T.C., Ecke R.E.: Two scenarios for avalanche dynamics in inclined granular layers. Phys. Rev. Lett. 94(20), 208001 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Lun C.K.K., Savage S.B.: The effects of an impact velocity dependent coefficient of restitution on stresses developed by sheared antigranulocytes-materials. Acta Mech. 63(1–4), 15–44 (1986)zbMATHCrossRefGoogle Scholar
  37. 37.
    Dendy R.O., Helander P.: Appearance and nonappearance of self-organized criticality in sandpiles. Phys. Rev. E 57(3), 3641–3644 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • S. Y. Lehman
    • 1
  • Elizabeth Baker
    • 1
  • Howard A. Henry
    • 1
  • Andrew J. Kindschuh
    • 1
  • Larry C. Markley
    • 1
  • Megan B. Browning
    • 1
  • Mary E. Mills
    • 1
  • R. Michael WintersIV
    • 1
  • D. T. Jacobs
    • 1
  1. 1.Department of PhysicsThe College of WoosterWoosterUSA

Personalised recommendations