Skip to main content

A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments


In this paper, we used a 3-D discrete-element model, Grains3D, which allows the simulation of unsteady granular flows of monodisperse soft spherical particles in a common situation (i.e., down a rectangular channel). A series of numerical dam-break experiments was performed to predict the behavior of granular columns that propagate down a rough horizontal surface from different initial conditions (varying the initial aspect ratio). Numerical results were compared to those obtained experimentally by Lajeunesse et al. (Phys Fluids 17:103302, 2005) from a similar configuration. Runout distance, temporal flow evolution, deposit morphology and internal flow structures of similar laboratory experiments were quantitatively reproduced as well as prediction of empirical and theoretical scaling laws. This paper highlights that such fully 3-D simulations of soft-spheres can remarkably capture dam-break collapses performed in a rectangular channel. Moreover, Grains3D can provide a complete physical description of such complex unsteady systems which will be the topic of future on-going studies.

This is a preview of subscription content, access via your institution.


δ ij :

Overlap distance between a particle i and j during the collision


Computational time step

\({{\epsilon_n}}\) :

Coefficient of restitution

γ n :

Damping coefficient in the normal direction

γ t :

Dissipative friction coefficient in the tangential direction

μ c :

Interparticle Coulomb friction coefficient

μ w :

Particle-wall Coulomb friction coefficient

ω ij :

Relative angular velocity between a particle i and j

ρ i :

Density of a particle i

σ :

Poisson coefficient

τ c :

Characteristic free fall time of the granular column

θ c :

Internal friction angle


Initial aspect ratio of the column in the reservoir

dp :

Particle diameter

E :

Young modulus

F i :

Sum of the forces applied to a particle i

F ij :

Colliding force between a particle i and j

F ij,dn :

Normal component of the dissipative force

F ij,el :

Hookean elastic restoring force

F ij,t :

Shear component of the dissipative force


Flow thickness at the time t

hf :

Deposit thickness taken at x = Li


Reservoir height

Hi :

Initial height of the column

kms :

Coefficient of rolling resistance

k n :

Stiffness coefficient

lf :

Length of the final deposit taken at x = 0

Li :

Initial length of the column

M i :

Mass of a particle i

\({\mathcal{M}_{rf}}\) :

Artificial rolling friction

m ij :

Reduced mass of two particles i and j in contact

N :

Total number of particles constituting the system

n C :

Unit normal vector at the contact point

R :

Particle radius

R ij :

Reduced particle radius

t C :

Unit tangential vector at the contact point

t :

Time from gate opening

U rn :

Relative velocity between a particle i and j in the normal direction

U rt :

Relative velocity between a particle i and j in the tangential direction


Channel width


Flow length at the time t

xf :

Flow length measured from x = Li


  1. Ai J., Chen J.F., Rotter J.M., Ooi J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206(3), 269–282 (2011)

    Article  Google Scholar 

  2. Balmforth N.J., Kerswell R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399 (2005)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  3. Barker, G.C.: Computer simulations of granular materials in granular matter: an inter-disciplinary approach. In: Mehta, A. p. 317. Springer (1993)

  4. Branney M.J., Kokelaar P.A.: Pyroclastic density currents and the sedimentation of ignimbrites. Geol. Soc. Lond. Mem. 27, 152 (2002)

    Google Scholar 

  5. Campbell C.S.: Rapid granular flows. Ann. Rev. Fluid Mech. 22, 57–92 (1990)

    ADS  Article  Google Scholar 

  6. Campbell C.S., Brennen C.E.: Computer simulation of granular shear flows. J. Fluid Mech. 151, 167 (1985)

    ADS  Article  Google Scholar 

  7. Campbell C.S., Cleary P.W., Hopkins M.: Large scale landslide simulations: global deformation, velocities and basal friction. J. Geophys. Res. 100, 8267–8283 (1995)

    ADS  Article  Google Scholar 

  8. Cleary P.W.: Discrete element modelling of industrial granular flow applications. TASK Q. 2, 385–416 (1998)

    Google Scholar 

  9. Cleary P.W., Prakash M.: Discrete-element modelling and smoothed particle hydrodynamics: potential in the environmental sciences. Phil. Trans. R. Soc. Lond. 362, 2003–2030 (2004)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  10. Cleary, P.W., Franck, M.: Three-dimensional discrete element simulation of axi-symmetric collapses of granular columns. Preprint (2006)

  11. Cundall, P.A.: A computer model for rock-mass behaviour using interactive graphics for the input and output of geometric data. U. S. Nat. Tech. Inf. Serv. Rep.AD/A-001, 602 (1974)

  12. Cundall P., Strack O.: Discrete numerical model for granular assemblies. Geotechnics 29, 47–65 (1979)

    Google Scholar 

  13. Druitt, T.H., Avard, G., Bruni, G., Lettieri, P., Yates, P.: Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull. Volcanol. doi:10.1007/s00445-007-0116-7(2007)

  14. Girolami, L., Druitt, T.H., Roche, O., Khrabrykh, Z.: Propagation and hindered settling of laboratory ash flows. J. Geophys. Res. 113. doi:10.1029/2007JB005074 (2008)

  15. Girolami L., Roche O., Druitt T.H., Corpetti T.: Particle velocity fields and depositional processes in laboratory ash flows, with implications for the sedimentation of dense pyroclastic flows. Bull.Volc. 72, 747–759 (2010). doi:10.1007/s00445-010-0356-9

    ADS  Article  Google Scholar 

  16. Grest G.S., Duenweg B., Kremer K.: Link cell fortran code for molecular dynamics simulations for a large number of particles. Comp. Phys. Com. 55(3), 69–285 (1989)

    Article  Google Scholar 

  17. Hendrickson B., Devine K.: Dynamic load balancing in computational mechanics. Comp. Meth. App. Mech. Eng. 184(2–4), 485–500 (2000)

    MATH  Article  Google Scholar 

  18. Hopkins M., Hibler W., Flato G.: On the simulation of the sea ice ridging process. J. Geophys. Res. 96, 4809–4820 (1991)

    ADS  Article  Google Scholar 

  19. Hutter K., Siegel M., Savage S.B., Nohguchi Y.: Two-dimensional spreading of a granular avalanche down an inclined plane. Acta Math. Acad. Sci. Hung. 100, 37 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Hutter K., Koch T., Pluss C., Savage S.B.: The dynamic of avalanches of granular materials from initiation to runout. Part II: experiments. Acta Mech. 109, 127 (1995)

    MathSciNet  Article  Google Scholar 

  21. Jabbarzadech A., Atkinson J.D., Tanner R.I.: A parallel algorithm for molecular dynamics simulation of branched molecules. Comp. Phys. Com. 150, 65–84 (2003)

    ADS  Article  Google Scholar 

  22. Kadau D., Schwesig D., Theuerkauf J., Wolf D.E.: Influence of particle elasticity in shear testers. Gran. Matters 8(1), 35–40 (2006). doi:10.1007/s10035-005-0217-y

    Article  Google Scholar 

  23. Kadau D., Herrmann H.J.: Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition. Phys. Rev. E 83, 031301 (2011)

    ADS  Article  Google Scholar 

  24. Kerswell R.R.: Dam break with coulomb friction: a model for granular slumping?. Phys. Fluids 17, 057101 (2005)

    MathSciNet  ADS  Article  Google Scholar 

  25. Khan K.M., Bushell G.: Comment on rolling friction in the dynamic simulation of sandpile formation. Phys. A. 352, 522–524 (2005)

    Article  Google Scholar 

  26. Lacaze, L., Phillips, J., Kerswell, R.R.: Planar collapse of a granular column: experiments and discrete-element simulations. Phys. Fluids 20, 063302, 1–12 (2008)

    Google Scholar 

  27. Lajeunesse E., Monnier J.B., Homsy G.M.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 17, 103302 (2005)

    ADS  Article  Google Scholar 

  28. Larrieu E., Staron L., Hinch E.J.: Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259–270 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  29. Lee J., Herrmann H.J.: Angle of repose and angle of marginal stability: molecular dynamics of granular particles. J. Phys. A 26, 373–383 (1993)

    ADS  Article  Google Scholar 

  30. Levine A.H., Kieffer S.W.: Hydraulics of the august 7, 1980, pyroclastic flow at Mount St. Helens, Washington. Geology 19, 1121–1124 (1991)

    ADS  Article  Google Scholar 

  31. Li S., Yao Q., Chen B., Zhang X., Ding Y.L.: Molecular dynamics simulation and continuum modelling of granular surface flow in rotating drums. Chin. Sci. Bull. 52(5), 692–700 (2007)

    Article  Google Scholar 

  32. Loughlin S.C., Calder E.S., Clarke A.B., Cole P.D., Luckett R., Mangan M., Pyle D., Sparks R.S.J., Voight B., Watts R.B.: Pyroclastic flows and surges generated by the 25 June 1997 dome collapse in: Eruption of Soufriere Hills Volcano, Montserrat from 1995 to 1999. Geol. Soc. Lon. Mem. 21, 191–209 (2002)

    Article  Google Scholar 

  33. Lube G., Huppert H.E., Sparks R.S.J., Hallworth M.: Axisymmetric collapse of granular columns. J. Fluid Mech. 508, 175 (2004)

    ADS  MATH  Article  Google Scholar 

  34. Mangeney A., Heinrich P., Roche R., Boudon G., Cheminée J.L.: Modeling of debris avalanche and generated water waves: Application to real and potential events in Montserrat. Phys. Chem. Earth 25, 741 (2000)

    Google Scholar 

  35. Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E., Aubertin, A.: On the use of Saint-Venant equations for simulating the spreading of a granular mass. J. Geophys. Res. 110 doi:10.1029/2004JB003161 (2005)

  36. Mc Clung D., Schaerer P.: The Avalanche Handbook, pp. 342. The Mountaineers (Seattle) edition, USA (1993)

    Google Scholar 

  37. Pacheco P.: Parallel Programming with MPI, pp. 500. Morgan Kaufmann, San Francisco, CA (1997)

    MATH  Google Scholar 

  38. Pitman E.B., Nichita C.C., Patra A., Bauer A., Sheridan M., Bursik M.: Computing granular avalanches and landslides. Phys. Fluids 15, 3638 (2003)

    MathSciNet  ADS  Article  Google Scholar 

  39. Plimpton S.: Fast parallel algorithms for short range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    ADS  MATH  Article  Google Scholar 

  40. Pouliquen O., Forterre Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 131 (2002)

    ADS  Article  Google Scholar 

  41. Radjai, F., Dubois, F.: Discrete Element Modeling of Granular Materials. In: Hermes Sciences, Lavoisier (2010)

  42. Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177 (1989)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  43. Smith B., Bjorstad P., Gropp W.: Domain Decomposition: parallel multilevel methods for elliptic partial differential equations, pp. 224. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  44. Sparks R.S.J.: Particle size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23, 147–188 (1976)

    ADS  Article  Google Scholar 

  45. Staron L., Hinch E.J.: Study of the collapse of granular columns using 2D discrete-grains simulation. J. Fluid Mech. 545, 1 (2005)

    ADS  MATH  Article  Google Scholar 

  46. Tsuji Y., Takana T.: Discrete particule simulation of flow patterns in two-dimensional gas-fluidized beds. Int. J. Mod. Phys. 7, 1889–1898 (1993)

    ADS  Article  Google Scholar 

  47. Wachs, A., Girolami, L., Vinay, G., Ferrer, G.: Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part I: numerical model and validations. Powder Technol. submitted (2011)

  48. Walton, O.R.: Numerical simulation of inelastic frictional particle-particle interaction. In: Particulate two-phase flow, pp 1002. M. C. Roco, ch. 25, Butterworth-Heinemann Edition, Oxford (1994)

  49. Wilson C.J.N.: The role of fluidization in the emplacement of pyroclastic flows: an experimental approach. J. Volcanol. Geotherm. Res. 8, 231–249 (1980)

    ADS  Article  Google Scholar 

  50. Zenit R.: Computer simulations of the collapse of a granular column. Phys. Fluids 17, 031703 (2005)

    ADS  Article  Google Scholar 

  51. Zhang J., Hu Z., Ge W., Zhang Y., Li T., Li J.: Application of the discrete approach to the simulation of size segregation in granular chute flow. Ind. Eng. Chem. Res. 43, 5521–5528 (2004)

    Article  Google Scholar 

  52. Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A. 269, 536–553 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. Girolami.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Girolami, L., Hergault, V., Vinay, G. et al. A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments. Granular Matter 14, 381–392 (2012).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Discrete-element modeling
  • Dam-break flows
  • Quantitative reproduction