Granular Matter

, Volume 14, Issue 2, pp 157–162 | Cite as

Characterization of the energy bursts in vibrated shallow granular systems

Original Paper

Abstract

We study the recently reported energy bursts that take place in a granular system confined to a vertically vibrated shallow box containing two types of grains of equal size but different mass (Rivas in Phys Rev Lett 106:088001–1–088001–4, 2011). In a quasi one dimensional configuration, it is possible to characterize the propagating fronts. The rapid expansion and the subsequent compression of the energy bursts take place at roughly constant velocities. The expansion velocity is 40 times larger than the compression velocity. Starting from an initially segregated configuration it is possible to determine the instants at which the energy bursts begin and the mechanisms that trigger them. Two mechanisms are identified: an oblique collision of a heavy grain with a light one in contact with one of the horizontal walls and a slow destabilization produced by light grains that are surrounded by heavy ones.

Keywords

Granular mixture Collective phenomena Vibrated systems Shallow geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivas N. et al.: Sudden chain energy transfer events in vibrated granular media. Phys. Rev. Lett. 106, 088001–1–088001–4 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Serero D., Goldhirsch I., Noskowick S.H., Tan M.-L.: Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237–258 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    Serero D., Noskowicz S.H., Tan M.-L., Goldhirsch I.: Binary granular gas mixtures: theory, layering effects and some open questions. Eur. Phys. J. Special Top. 179, 221–248 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Kudrolli A.: Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209–248 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Rosato A., Strandburg K.J., Prinz F., Swendsen R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040 (1987)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Rivas N., Cordero P., Risso D., Soto R.: Segregation in quasi-two-dimensional granular systems. New J. Phys. 13, 055018-1–055018-22 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Olafsen J.S., Urbach J.S.: Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369–4372 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Prevost A., Melby P., Egolf D.A., Urbach J.S.: Nonequilibrium two-phase coexistence in a confined granular layer. Phys. Rev. E 70, 050301(R)-1–050301(R)-4 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Melby P. et al.: The dynamics of thin vibrated granular layers. J. Phys. Cond. Mat. 17, S2689–S2704 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Clerc M.G., Cordero P., Dunstan J., Huff K., Mujica N., Risso D., Varas G.: Liquid-solid-like transition in quasi-one-dimensional driven granular media. Nat. Phys. 4, 249–254 (2008)CrossRefGoogle Scholar
  11. 11.
    Schnautz T., Brito R., Kruelle C.A., Rehberg I.: A horizontal Brazil-nut effect and its reverse. Phys. Rev. Lett. 95, 028001 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Chung F.F., Liaw S.S., Ju C.Y.: Brazil nut effect in a rectangular plate under horizontal vibration. Gran. Matter 11, 79–86 (2009)MATHCrossRefGoogle Scholar
  13. 13.
    Olafsen J.S., Urbach J.S.: Two-dimensional melting far from equilibrium in a granular monolayer. Phys. Rev. Lett. 95, 098002-1–098002-4 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Pacheco-Vazquez F., Caballero-Robledo A G., Ruiz-Suarez J.C.: Superheating in granular matter. Phys. Rev. Lett. 102, 170601–170604 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Reis P.M., Sykes T., Mullin T.: Phases of granular segregation in a binary mixture. Phys. Rev. E 74, 051306-1–051306-13 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Rivas N., Risso D., Soto R., Cordero P.: Energy bursts in vibrated shallow granular systems. AIP Conf. Proc. 1332, 184–189 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Marín M., Risso D., Cordero P.: Efficient algorithms for many-body hard particle molecular dynamics. J. Comput. Phys. 109, 306–317 (1993)ADSMATHCrossRefGoogle Scholar
  18. 18.
    Risso D., Soto R., Godoy S., Cordero P.: Friction and convection in a vertically vibrated granular system. Phys. Rev. E 72, 011305-1–011305-6 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Jenkins J.T., Zhang Chao: Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 1228–1235 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Goldhirsch I.: Scales and kinetics of granular flows. Chaos 9, 659–672 (1999)ADSMATHCrossRefGoogle Scholar
  21. 21.
    Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departamento de Física, FCFMUniversidad de ChileSantiagoChile
  2. 2.Departamento de FísicaUniversidad del Bío-BíoConcepciónChile

Personalised recommendations