Skip to main content

Suction of splash after impact on dry quick sand

Abstract

It is well known that a splash occurs when an object impacts at high velocity on a liquid’s surface. If the impact is fast enough, surface tension and air pressure gradients pull the crown-shape splash all the way towards the axis of symmetry, making it to collapse and seal the surface. In this paper we show that splash and surface sealing are also observed in impacts on soft, dry sand. We observe influence of air pressure and grains size on the shape of the splash. By tracking individual grains using high-speed imaging we calculate their acceleration, which results from gravity and drag forces. Assuming friction drag parallel, and pressure drag perpendicular to the direction of motion of grains we estimate the friction and pressure drag contributions to the drag force. Our results support the idea that pressure drag from Bernoulli effect is at the origin of the surface seal.

References

  1. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68(4), 1259–1273 (1996)

    ADS  Article  Google Scholar 

  2. Thoroddsen S.T., Shen A.Q.: Granular jets. Phys. Fluids 13, 4–6 (2001)

    ADS  Article  Google Scholar 

  3. Lohse D., Bergmann R., Mikkelsen R., Zeilstra C., van der D.M., Versluis M., van der K.W., van der M.H., Kuipers H.: Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93(19), 198003 (2004)

    ADS  Article  Google Scholar 

  4. Mikkelsen R., Versluis M., Koene E., Bruggert G.W., van der Meer D., van der Weele K., Lohse D.: Granular eruptions: void collapse and jet formation. Phys. Fluids 14, S14 (2002)

    Google Scholar 

  5. Worthington A.M., Cole R.S.: Impact with a liquid surface studied by the aid of instantaneous photography. Paper II. Philos. Trans. Royal Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 194, 175–199 (1900)

    ADS  Article  Google Scholar 

  6. Gilbarg D., Anderson R.A.: Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water. J. Appl. Phys. 19(2), 127–139 (1948)

    ADS  Article  Google Scholar 

  7. Abelson H.I.: Pressure measurements in the water-entry cavity. J. Fluid Mech. 44, 129–144 (1970)

    ADS  Article  Google Scholar 

  8. Bergmann R., van der Meer D., Stijnman M., Sandtke M., Prosperetti A., Lohse D.: Giant bubble pinch-off. Phys. Rev. Lett. 96(15), 154505 (2006)

    ADS  Article  Google Scholar 

  9. Duclaux V., Caillé F., Duez C., Ybert C., Bocquet L., Canet C.: Dynamics of transient cavities. J. Fluid Mech. 591, 1–19 (2007)

    ADS  MATH  Article  Google Scholar 

  10. Gekle S., Gordillo J.M., van der Meer D., Lohse D.: High-speed jet formation after solid object impact. Phys. Rev. Lett. 102(3), 034502 (2009)

    ADS  Article  Google Scholar 

  11. Lee M., Longoria R.G., Wilson D.E.: Cavity dynamics in high-speed water entry. Phys. Fluids 9(3), 540–550 (1997)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  12. May A.: Vertical entry of missile into water. J. Appl. Phys. 23(12), 1362–1372 (1952)

    ADS  Article  Google Scholar 

  13. Glasheen J.W., McMahon T.A.: Vertical water entry of disks at low Froude numbers. Phys. Fluids 8(8), 2078–2083 (1996)

    ADS  Article  Google Scholar 

  14. Duez C., Ybert C., Clanet C., Bocquet L.: Making a splash with water repellency. Nat. Phys. 3(3), 180–183 (2007)

    Article  Google Scholar 

  15. Caballero G., Bergmann R., van der Meer D., Prosperetti A., Lohse D.: Role of air in granular jet formation. Phys. Rev. Lett. 99(1), 018001 (2007)

    ADS  Article  Google Scholar 

  16. von Kann S., Joubaud S., Caballero-Robledo G.A., Lohse D., van der Meer D.: Effect of finite container size on granular jet formation. Phys. Rev. E 81(4), 041306 (2010)

    ADS  Article  Google Scholar 

  17. Lohse D., Rauhe R., Bergmann R., van der Meer D.: Creating a dry variety of quicksand. Nature 432, 689 (2004)

    ADS  Article  Google Scholar 

  18. Deboeuf S., Gondret P., Rabaud M.: Dynamics of grain ejection by sphere impact on a granular bed. Phys. Rev. E 79(4), 041306 (2009)

    ADS  Article  Google Scholar 

  19. Royer J.R., Evans D.J., Oyarte L., Guo Q., Kapit E., Mobius M.E., Waitukaitis S.R., Jaeger H.M.: High-speed tracking of rupture and clustering in freely falling granular streams. Nature 459(7250), 1110–1113 (2009)

    ADS  Article  Google Scholar 

  20. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipies: the Art of Scientific Computing. 3rd edn. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Lohse.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (MPG 2710 kb)

ESM 2 (MPG 4098 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Caballero-Robledo, G.A., Kelly, K.P.D., Homan, T.A.M. et al. Suction of splash after impact on dry quick sand. Granular Matter 14, 179–184 (2012). https://doi.org/10.1007/s10035-012-0326-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0326-3

Keywords

  • Granular systems
  • Fluidized beds
  • Porous media