Skip to main content
Log in

Numerical and experimental study of a spherical particle flow in a cylindrical tube under vacuum conditions

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The paper aims at developing a validated model that can accurately predict the flow of a particulate material. This model will serve as a virtual design tool for the design of a novel passive safety system for nuclear reactors. Therefore an experimental setup consisting of a vertical glass tube is filled with 500±30 μm spherical glass particles. The experiment is then placed in a vacuum and the particles are released by opening a valve. The velocity of the particles is recorded during their fall at three different heights using a non invasive optical tracking technique with an original implementation. The same experiment is then simulated using the Discrete Element Method and results are compared. A good agreement between the simulation and the experiment was found. The sensitivity of the simulation to a change in the contact stiffness, dynamic Coulomb coefficient of friction and tangential contact force model was investigated. The influence of the initial position of the simulated particles on the packing factor was shown to be very important. Finally the experiment proved to be extremely sensitive to a perturbation of the outflow section of the tube, something that was predicted by the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reynolds A.B., Walter A.E.: Fast Breeder Reactors. Pergamon Press, UK (1980)

    Google Scholar 

  2. Dintwa E., Ramon H., Van Liedekerke P., Tijskens E.: A discrete element model for simulation of a spinning disc fertilizer spreader. Powder Technol. 170, 348–360 (2009)

    Google Scholar 

  3. Aider J.-L., Sommier N., Raafat T., Hulin J.-P.: Experimental study of a granular flow in a vertical pipe: a spatiotemporal analysis. Phys. Rev. E 59, 778–786 (1999)

    Article  ADS  Google Scholar 

  4. Bertho Y., Giorgiutti-Dauphin F., Hulin J.-P.: Intermittent dry granular flow in a vertical pipe. Phys. Fluids 15, 12 (2003)

    Article  Google Scholar 

  5. Raafat T., Hulin J.P., Herrmann H.J.: Density waves in dry granular media falling through a vertical pipe. Phys. Rev. E 53, 4345–4350 (1996)

    Article  ADS  Google Scholar 

  6. Lee J.: Density waves in the flows of granular media. Phys. Rev. E 49, 281–298 (1994)

    Article  ADS  Google Scholar 

  7. Lee J., Leibig M.: Density waves in granular flow: a kinetic wave approach. J. Phys. I France 4, 507–514 (1994)

    Article  Google Scholar 

  8. Kurtze D.A., Hong D.C.: Traffic jams, granular flow, and soliton selection. Phys. Rev. E 52, 218–222 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  9. Dullien F.A.: Porous Media: Fluid Transport and Pore Structure. Academic Press, New York (1991)

    Google Scholar 

  10. Brilliantov N.V., Spahn F., Hertzsch J., Pöschel T.: Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996)

    Article  ADS  Google Scholar 

  11. Kuwabara G., Kono K.: Restitution coefficient in a collision between 2 spheres. Jpn J. Appl. Phys. 26, 1230–1233 (1987)

    Article  ADS  Google Scholar 

  12. Vu-Quoc L., Zhang X.: An elasto-plastic contact force-displacement model in the normal direction: Displacement-driven version. Proc. R. Soc. Lond. Ser. A 455, 4013–4044 (1991)

    Google Scholar 

  13. Vu-Quoc L., Zhang X., Lesburg L.: A normal force-displacement model for contacting spheres, accounting for plastic deformation: Force-driven formulation. ASME J. Appl. Mech. 67, 363–371 (2000)

    Article  ADS  MATH  Google Scholar 

  14. Vu-Quoc L., Zhang X., Lesburg L.: Normal and tangential force-displacement relations for frictional elasto-plastic contact of spheres. Int. J. Solids Struct. 38, 6455–6489 (2001)

    Article  MATH  Google Scholar 

  15. Plantard G., Papini M.: Mechanical and electrical behaviors of polymer particles. Experimental study of the contact area between two particles. Experimental validation of a numerical model. Granular Matter 7, 1–12 (2005)

    Article  Google Scholar 

  16. Vu-Quoc L., Zhang X.: An accurate and efficient tangential force displacement model for elastic frictional contact in particle-flow simulations. Mech. Mater. 31, 235–269 (1999)

    Article  Google Scholar 

  17. Vu-Quoc L., Lesburg L., Zhang X.: An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196, 298–326 (2004)

    Article  ADS  MATH  Google Scholar 

  18. Mindlin R.D., Deresiewicz H.: Elastic spheres in contact under varying oblique forces. ASME J. Appl. Mech. 20, 327–344 (1953)

    MathSciNet  MATH  Google Scholar 

  19. Luding S.: The effect of friction on wide shear bands. Part. Sci. Technol. 26, 33–42 (2008)

    Article  ADS  Google Scholar 

  20. Silbert L.E., Ertas D., Grest G.S., Halsey T.C., Levine D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65, 6 (2002)

    MathSciNet  Google Scholar 

  21. Di Renzo A., PaoloDi Maio F.P.: Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chem. Eng. Sci. 59, 525–541 (2004)

    Article  Google Scholar 

  22. Freireich B., Litster J., Wassgren C.: Comparison of contact-force models for the simulation of collisions in dem-based granular flow codes. Chem. Eng. Sci. 64, 3407–3416 (2009)

    Article  Google Scholar 

  23. Majid M., Walzel P.: Convection and segregation in vertically vibrated granular beds. Powder Technol. 192, 311–317 (2009)

    Article  Google Scholar 

  24. Cheng X., Lechman J.B., Fernandez-Barbero A., Grest G.S., Jaeger H.M., Karczmar G.S., Möbius M.E., Nagel S.R.: Three-dimensional shear in granular flow. Phys. Rev. Lett. 96, 4 (2006)

    Google Scholar 

  25. Doremus R.H., Bansal N.P.: Handbook of Glass Properties. Academic Press, Orlando, USA (1986)

    Google Scholar 

  26. Haff P.K., Werner B.T.: Computer-simulation of the mechanical sorting of grains. Powder Technol. 48, 239–245 (1986)

    Article  Google Scholar 

  27. Janssen H.A.: Versuche über Getreidedruck in Silozellen. Zet. Ver. Deutsch. Ing. 39, 1045–1049 (1895)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Vanmaercke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanmaercke, S., Tijskens, E., Van den Eynde, G. et al. Numerical and experimental study of a spherical particle flow in a cylindrical tube under vacuum conditions. Granular Matter 13, 713–721 (2011). https://doi.org/10.1007/s10035-011-0293-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0293-0

Keywords

Navigation