Skip to main content
Log in

A contact model for the yielding of caked granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present a visco-elastic coupling model between caked spheres, suitable for Distinct Element Method simulations, which incorporates the different loading mechanisms (tension, shear, bending, torsion) in a combined manner and allows for a derivation of elastic and failure properties on a common basis. In pull, shear, and torsion failure tests with agglomerates of up to 10.000 particles, we compare the failure criterion to different approximative variants of it, with respect to accuracy and computational cost. The failure of the agglomerates, which behave according to elastic parameters derived from the contact elasticity, gives also insight into the relative relevance of the different load modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonyuk S., Khanal M., Tomas J., Heinrich S., Mörl L.: Impact breakage of spherical granules: experimental study and dem simulation. Chem. Eng. Process. Process. Intensif. 45(10), 838–856 (2006)

    Article  Google Scholar 

  2. Borghi R., Bonelli S.: Towards a constitutive law for the unsteady contact stress in granular media. Continuum Mech. Thermodyn. 19, 329–345 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Carmona H.A., Wittel F.K., Kun F., Herrmann H.J.: Fragmentation processes in impact of spheres. Phys. Rev. E 77(5), 051302 (2008)

    Article  ADS  Google Scholar 

  4. da Cruz F., Emam S., Prochnow M., Roux J.N., Chevoir F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    Article  ADS  Google Scholar 

  5. Cundall P., Strack O.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  6. Delenne J.Y., Youssoufi M.S.E., Cherblanc F.: Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Meth. Geomech. 28, 1577–1594 (2004)

    Article  MATH  Google Scholar 

  7. Ergenzinger, C., Seifried, R., Eberhard, P.: A discrete element model to describe failure of strong rock in uniaxial compression. Granul. Matter (2010). doi:10.1007/s10035-010-0230-7

  8. Herrmann H.J., Hansen A., Roux S.: Fracture of disordered, elastic lattices in two dimensions. Phys. Rev. B 39, 637–648 (1989)

    Article  ADS  Google Scholar 

  9. Herrmann, H.J., Hovi, J.P., Luding, S. (eds.) The Physics of Dry Granular Media, vol. 350. Kluwer, Dordrecht (1998)

  10. Kirsch, R., Brendel, L., Török, J., Bröckel, U.: Measuring tensile, shear and torsional strength of solid bridges between particles in the millimeter regime. Granul. Matter 13(5), 517–523 (2011)

    Google Scholar 

  11. Kuhl E., d’Addetta G.A., Herrmann H.J., Ramm E.: A comparison of discrete granular material models with continuous microplane formulations. Granul. Matter 2, 113–122 (2000)

    Article  Google Scholar 

  12. Luding, S.: Collisions & contacts between two particles. In: Herrmann, H.J., Hovi, J.P., Luding, S. (eds.) Physics of Dry Granular Media, pp. 285–304. Kluwer, Dordrecht (1998)

  13. Luding S.: Cohesive frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mitarai N., Nori F.: Wet granular materials. Adv. Phys. 55(1), 1–45 (2006)

    Article  ADS  Google Scholar 

  15. Plimpton S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  16. Pöschel, T., Luding, S. (eds.): Lecture Notes in Physics: Granular Gases, vol. 564. Springer, Berlin (2001)

  17. Roux, S.: Quasi-static contacts. In: Herrmann, H.J., Hovi, J.P., Luding, S. (eds.) Physics of Dry Granular Media, pp. 267–284. Kluwer, Dordrecht (1998)

  18. Sokolnikoff I.S.: Mathematical Theory of Elasticity. Krieger, Malabar (1983)

    MATH  Google Scholar 

  19. Tresca H.: Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. C.R. Acad. Sci. Paris 59, 754 (1864)

    Google Scholar 

  20. Wang Y., Alonso-Marroquin F.: A finite deformation method for discrete modeling: particle rotation and parameter calibration. Granul. Matter 11, 331–343 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brendel, L., Török, J., Kirsch, R. et al. A contact model for the yielding of caked granular materials. Granular Matter 13, 777–786 (2011). https://doi.org/10.1007/s10035-011-0287-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0287-y

Keywords

Navigation