Skip to main content
Log in

Weakly nonlinear analysis of two dimensional sheared granular flow

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Weakly nonlinear analysis of a two dimensional sheared granular flow is carried out under the Lees-Edwards boundary condition. We derive the time dependent Ginzburg–Landau equation of a disturbance amplitude starting from a set of granular hydrodynamic equations and discuss the bifurcation of the steady amplitude in the hydrodynamic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luding S.: Towards dense, realistic granular media in 2D. Nonlinearity 22, R101 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Pöschel, T., Luding, S. (eds): Granular Gases. Springer, Berlin (2001)

    Google Scholar 

  3. Brilliantov N.V., Pöschel T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  4. Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  5. Jeager H., Nagel S., Behringer R.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  6. Chong S., Otsuki M., Hayakawa H., Luding S.: Generalized Green–Kubo relation and integral fluctuation theorem for driven dissipative. Phys. Rev. E 81, 041130 (2010)

    Article  ADS  Google Scholar 

  7. Forterre Y., Pouliquen O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Pouliquen O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11, 542 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Sela N., Goldhirsch I., Noskowicz S.H.: Kinetic theoretical study of a simply sheared two-dimensional granular gas to Burnett. Phys. Fluids 8, 2337 (1996)

    Article  ADS  MATH  Google Scholar 

  10. Santos A., Garzó V., Dufty J.W.: Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E 69, 061303 (2004)

    Article  ADS  Google Scholar 

  11. Tan M.L., Goldhirsch I.: Intercluster interactions in rapid granular shear flows. Phys. Fluids 9, 856 (1997)

    Article  ADS  Google Scholar 

  12. Saitoh K., Hayakawa H.: Rheology of a granular gas under a plane shear. Phys. Rev. E 75, 021302 (2007)

    Article  ADS  Google Scholar 

  13. Kumaran V.: Velocity autocorrelations and viscosity renormalisation in sheared granular flows. Phys. Rev. Lett. 96, 258002 (2006)

    Article  ADS  Google Scholar 

  14. Kumaran V.: Dynamics of a dilute sheared inelastic fluid. I. Hydrodynamic modes and velocity correlation functions. Phys. Rev. E 79, 011301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kumaran V.: Dynamics of a dilute sheared inelastic fluid. II. The effect of correlation. Phys. Rev. E 79, 011302 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Orpe A., Kudrolli A.: Velocity correlations in dense granular flows observed with internal imaging. Phys. Rev. Lett. 98, 238001 (2007)

    Article  ADS  Google Scholar 

  17. Orpe A., Kumaran V., Reddy K., Kudrolli A.: Fast decay of the velocity autocorrelation function in dense shear flow of inelastic hard spheres. Europhys. Lett. 84, 64003 (2008)

    Article  ADS  Google Scholar 

  18. Rycroft C., Orpe A., Kudrolli A.: Physical test of a particle simulation model in a sheared granular system. Phys. Rev. E 80, 031305 (2009)

    Article  ADS  Google Scholar 

  19. Lutsko J.F., Dufty J.W.: Hydrodynamic fluctuations at large shear rate. Phys. Rev. A 32, 3040 (1985)

    Article  ADS  Google Scholar 

  20. Otsuki M., Hayakawa H.: Unified description of long-time tails and long-range correlation functions for sheared granular liquids. Eur. Phys. J. Special Topics 179, 179 (2009)

    Article  ADS  Google Scholar 

  21. Otsuki M., Hayakawa H.: Spatial correlations in sheared isothermal liquids: from elastic particles to granular particles. Phys. Rev. E 79, 021502 (2009)

    Article  ADS  Google Scholar 

  22. Otsuki, M., Hayakawa, H.: Long-time tails for sheared fluids. J. Stat. Mech: Theor. Exp. L08003 (2009)

  23. Louge M.Y.: Computer simulations of rapid granular flows of spheres interacting with a flat, frictional boundary. Phys. Fluids 6, 2253 (1994)

    Article  ADS  MATH  Google Scholar 

  24. Louge M.Y.: Model for dense granular flows down bumpy inclines. Phys. Rev. E 67, 061303 (2003)

    Article  ADS  Google Scholar 

  25. Xu H., Reeves A.P., Louge M.Y.: Measurement errors in the mean and fluctuation velocities of spherical grains from a computer analysis of digital images. Rev. Sci. Instrum. 75, 811 (2004)

    Article  ADS  Google Scholar 

  26. Xu H., Louge M.Y., Reeves A.P.: Solutions of the kinetic theory for bounded collisional granular flows. Continuum Mech. Thermodyn. 15, 321 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Khain E.: Hydrodynamics of fluid-solid coexistence in dense shear granular flow. Phys. Rev. E 75, 051310 (2007)

    Article  ADS  Google Scholar 

  28. Khain E.: Bistability and hysteresis in dense shear granular flow. Eur. Phys. Lett. 87, 14001 (2009)

    Article  ADS  Google Scholar 

  29. Midi G.: On dense granular flows. Eur. Phys. J. E 14, 341 (2004)

    Article  Google Scholar 

  30. da Cruz F., Eman S., Prochnow M., Roux J., Chevoir F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  31. Hatano T.: Power-law friction in closely packed granular materials. Phys. Rev. E 75, 060301(R) (2007)

    Article  ADS  Google Scholar 

  32. van Hecke M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Matter 22, 033101 (2010)

    Article  ADS  Google Scholar 

  33. Hatano T., Otsuki M., Sasa S.: Criticality and scaling relations in a sheared granular material. J. Phys. Soc. Jpn. 76, 023001 (2007)

    Article  ADS  Google Scholar 

  34. Hatano T.: Scaling properties of granular rheology near the jamming transition. J. Phys. Soc. Jpn. 77, 123002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. Otsuki M., Hayakawa H.: Universal scaling for the jamming transition. Prog. Theor. Phys. 121, 647 (2009)

    Article  ADS  Google Scholar 

  36. Otsuki M., Hayakawa H.: Critical behaviors of sheared frictionless granular materials near the jamming transition. Phys. Rev. E 80, 011308 (2009)

    Article  ADS  Google Scholar 

  37. Otsuki M., Hayakawa H., Luding S.: Behavior of pressure and viscosity at high densities for two-dimensional hard and soft granular materials. Prog. Theor. Phys. Suppl. 184, 110 (2010)

    Article  ADS  MATH  Google Scholar 

  38. Lun C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539 (1991)

    Article  ADS  MATH  Google Scholar 

  39. Brey J.J., Dufty J.W., Kim C.S., Santos A.: Hydrodynamics for granular flow at low density. Phys. Rev. E 58, 4638 (1998)

    Article  ADS  Google Scholar 

  40. Garzó V., Dufty J.W.: Dense fluid transport for inelastic hard spheres. Rev. E 59, 5895 (1998)

    Google Scholar 

  41. Lutsko J.F.: Rheology of dense polydisperse granular fluids under shear. Phys. Rev. E 70, 061101 (2004)

    Article  ADS  Google Scholar 

  42. Lutsko J.F.: Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E 72, 021306 (2005)

    Article  ADS  Google Scholar 

  43. Lutsko J.F.: Chapman–Enskog expansion about nonequilibrium states with application to the sheared granular fluid. Phys. Rev. E 73, 021302 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  44. Jenkins J.T., Richman M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485 (1985)

    Article  ADS  MATH  Google Scholar 

  45. Jenkins J.T., Richman M.W.: Grads 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Savage S.B.: Instability of unbounded uniform granular shear flow. J. Fluid Mech. 241, 109 (1992)

    Article  ADS  MATH  Google Scholar 

  47. Garzó V.: Transport coefficients for an inelastic gas around uniform shear flow: linear stability analysis. Phys. Rev. E 73, 021304 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  48. Schmid P.J., Kytömaa H.K.: Transient and asymptotic stability of granular shear flow. J. Fluid Mech. 264, 255 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Wang C.H., Jackson R., Sundaresan S.: Stability of bounded rapid shear flows of a granular material. J. Fluid Mech. 308, 31 (1996)

    Article  ADS  MATH  Google Scholar 

  50. Alam M., Nott P.R.: The influence of friction on the stability of unbounded granular shear flow. J. Fluid Mech. 343, 267 (1997)

    Article  ADS  MATH  Google Scholar 

  51. Alam M., Nott P.R.: Stability of plane Couette flow of a granular material. J. Fluid Mech. 377, 99 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Gayen B., Alam M.: Algebraic and exponential instabilities in a sheared micropolar granular fluid. J. Fluid Mech. 567, 195 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Otsuki M., Hayakawa H.: Critical scaling near jamming transition for frictional granular particles. Phys. Rev. E 83, 051301 (2011)

    Article  ADS  Google Scholar 

  54. Shukla P., Alam M.: Landau-type order parameter equation for shear banding in granular Couette flow. Phys. Rev. Lett. 103, 068001 (2009)

    Article  ADS  Google Scholar 

  55. Shukla P., Alam M.: Weakly nonlinear theory of shear-banding instability in a granular plane Couette flow: analytical solution, comparison with numerics and bifurcation. J. Fluid Mech. 666, 204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Shukla P., Alam M.: Nonlinear stability and patterns in granular plane Couette flow: Hopf and pitchfork bifurcations, and evidence for resonance. J. Fluid Mech. 672, 147 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Reynolds W.C., Potter M.C.: Finite-amplitude instability of parallel shear flows. J. Fluid Mech. 27, 465 (1967)

    Article  ADS  MATH  Google Scholar 

  58. Lees A.W., Edwards S.F.: The computer study of transport processes under extreme conditions. J. Phys. C 5, 1921 (1972)

    Article  ADS  Google Scholar 

  59. Stuart J.T.: On the non-linear mechanics of wave disturbances in stable and unstable parallel flows Part 1. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9, 353 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  60. Stewartson K., Stuart J.T.: A non-linear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Newell A.C., Whitehead J.A.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279 (1969)

    Article  ADS  MATH  Google Scholar 

  62. Kuramoto Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  63. Aranson I.S., Kramer L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Cross M., Hohenberg P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  65. Jenkins J.T., Zhang C.: Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 1228 (2002)

    Article  ADS  Google Scholar 

  66. Yoon D., Jenkins J.: Kinetic theory for identical, frictional, nearly elastic disks. Phys. Fluids 17, 083301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  67. Verlet L., Levesque D.: Integral equations for classical fluids. Mol. Phys. 46, 969 (1982)

    Article  ADS  Google Scholar 

  68. Henderson D.: Monte carlo and perturbation theory studies of the equation of state of the two-dimensional Lennard–Jones fluid. Mol. Phys. 34, 301 (1977)

    Article  ADS  Google Scholar 

  69. Henderson D.: A simple equation of state for hard discs. Mol. Phys. 30, 971 (1975)

    Article  ADS  Google Scholar 

  70. Carnahan N., Starling K.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  71. Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., Croz J.D., Greenbaum A., Hammarling S., McKenney A., Sorensen D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  Google Scholar 

  72. Cross M.C., Daniels P.G., Hohenberg P.C., Siggia E.D.: Phase-winding solutions in a finite container above the convective threshold. J. Fluid Mech. 127, 155 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. van Saarloos W.: Front propagation into unstable states. II. Linear versus nonlinear marginal stability and rate of convergence. Phys. Rev. A 39, 6367 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  74. Komatsu T.S., Hayakawa H.: Nonlinear waves in fluidized beds. Phys. Lett. A 183, 56 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuniyasu Saitoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, K., Hayakawa, H. Weakly nonlinear analysis of two dimensional sheared granular flow. Granular Matter 13, 697–711 (2011). https://doi.org/10.1007/s10035-011-0283-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0283-2

Keywords

Navigation