Skip to main content
Log in

The microstructure of particulate mixtures in one-dimensional compression: numerical studies

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The current paper documents a series of numerical experiments conducted to study the microstructure evolution experienced by mixtures created with particles of contrasting size and stiffness, subjected to one-dimensional compression. Emphasis is placed on quantifying the effects of mixture fraction and relative size ratio on macroscale and microscale responses. The results indicate that force percolation (specifically through the network of high-stiffness grains) controls system mechanical response at the macroscale. The mixing fraction and size ratio of the particles significantly affects (1) force percolation and (2) the strain-dependent evolution of the void space. The latter is of particular relevance to the stress-dependent hydraulic conductivity evolution of the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Malasavage N.E., Gallagher P.M., Grubb D.G., Wartman J., Carnivale M. III: Modifying a plastic clay with crushed glass: Implications for constructed fills. Soils and Foundations 47(6), 1017–1027 (2007)

    Article  Google Scholar 

  2. Grubb D.G., Gallagher P.M., Wartman J., Liu Y.G., Carnivale M.: Laboratory evaluation of crushed glass-dredged material blends. J. Geotech. Geoenviron. Eng. 132(5), 562–576 (2006)

    Article  Google Scholar 

  3. Seda, J.H., Lee, J.C., Carraro, J.A.H.: Beneficial use of waste tire rubber for swelling potential mitigation in expansive soils. In: Proceedings of Geo-Denver 2007, Geotechnical Special Publication No. 172, ASCE, Denver, CO (2007)

  4. Radjai F., Wolf D.E., Jean M., Moreau J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

    Article  ADS  Google Scholar 

  5. Cundall P.A., Strack O.D.L.: Discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  6. Itasca Consulting Group: PFC2D: Particle Flow Code in Two Dimensions. 3.10 (2006)

  7. Valdes J.R., Liang S.: Stress-controlled filtration with compressible particles. J. Geotech. Geoenviron. Eng. 132(7), 861–868 (2006)

    Article  Google Scholar 

  8. Karanikola V., Ngo A.T., Valdes J.R.: Plankton filtration with compressible crumb rubber packs. Chemosphere 82(4), 597–602 (2011)

    Article  Google Scholar 

  9. Santamarina J.C., Klein K.A., Fam M.A.: Soils and Waves. Wiley, West Sussex (2001)

    Google Scholar 

  10. Thornton C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  11. Cui L., O’Sullivan C.: Exploring the macro- and micro-scale response of an idealised granular material in the direct shear apparatus. Geotechnique 56(7), 455–468 (2006)

    Article  Google Scholar 

  12. Jung, Y., Lee, J., Chung, C.: Evolution of fabric anisotropy in granular soils under triaxial loadings. GeoCongress 2006, American Society of Civil Engineers, Atlanta, 157 (2006)

  13. Jiang M., Yu H., Leroueil S.: A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method. Int. J. Numer. Methods Eng. 69(6), 1158–1193 (2007)

    Article  MATH  Google Scholar 

  14. El Shamy U., Zeghal M.: Coupled continuum-discrete model for saturated granular soils. J. Eng. Mech. 131(4), 413–426 (2005)

    Article  Google Scholar 

  15. Evans T.M., Frost J.D.: Shear banding and microstructure evolution in 2D numerical experiments. Geotechnical Special Publication No 173: Advances in Measurement and Modeling of Soil Behavior. ASCE-GI, Reston, VA (2007)

    Google Scholar 

  16. Jacobson D.E., Valdes J.R., Evans T.M.: A numerical view into direct shear specimen size effects. Geotech. Test. J. 30(6), 512–516 (2007)

    Google Scholar 

  17. Belheine N., Plassiard J., Donze F., Darve F., Seridi A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2), 320–331 (2009)

    Article  Google Scholar 

  18. Evans T.M., Frost J.D.: Multiscale investigation of shear bands in sand: Physical and numerical experiments. Int. J. Numer. Anal. Methods Geomech. 34(15), 1634–1650 (2010)

    Google Scholar 

  19. Lade P.V., Liggio C.D., Yamamuro J.A.: Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech. Test. J. 21(4), 336–347 (1998)

    Article  Google Scholar 

  20. Voivret, C., Radjai, F., Delenne, J., El Youssoufi, M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102(17) (2009)

  21. Lee J., Dodds J., Santamarina J.C.: Behavior of rigid-soft particle mixtures. J. Mater. Civil Eng. 19(2), 179–184 (2007)

    Article  Google Scholar 

  22. Frost J.D., Kuo C.: Automated determination of the distribution of local void ratio from digital images. Geotech. Test. J. 19(2), 107–117 (1996)

    Article  Google Scholar 

  23. Evans T.M., Chall S., Zhao X., Rhyne T.: Visualization and analysis of microstructure in three-dimensional discrete numerical models. J. Comput. Civil Eng. 23(5), 277–287 (2009)

    Article  Google Scholar 

  24. Evans, T.M.: Microscale physical and numerical investigations of shear banding in granular oils. PhD thesis, Georgia Institute of Technology, Atlanta, GA (2005)

  25. Underwood E.E.: Quantitative Stereology. Addison-Wesley, Reading, MA (1970)

    Google Scholar 

  26. Harr M.E.: Reliability-based Design in Civil Engineering. McGraw-Hill, New York (1987)

    Google Scholar 

  27. Pearson, K.: Mathematical contributions to the theory of evolution. XIX. Second supplement to a memoir on skew variation. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 216, pp. 429–457 (1916)

  28. Chen, C.: Shear induced evolution of structure in water-deposited sand specimens. PhD thesis, Georgia Institute of Technology, School of Civil and Environmental Engineering, Atlanta (2000)

  29. Lilliefors H.W.: On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  30. Finkelstein J.M., Schafer R.E.: Improved goodness-of-fit tests. Biometrika 58(3), 641–645 (1971)

    Article  MATH  Google Scholar 

  31. Santamarina J.C., Fratta D.: Introduction to discrete signals and inverse problems in civil engineering. American Society of Civil Engineers, Reston, VA (1998)

    Google Scholar 

  32. National Institute of Standards and Technology: NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/ (08/15, 2007) (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Matthew Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, T.M., Valdes, J.R. The microstructure of particulate mixtures in one-dimensional compression: numerical studies. Granular Matter 13, 657–669 (2011). https://doi.org/10.1007/s10035-011-0278-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0278-z

Keywords

Navigation