Skip to main content
Log in

Stress-chain based micromechanics of sand with grain shape effect

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The mechanical behaviors of granular media are controlled by grain properties and microstructure. The primary property of granular media is denoted by its grain shape, grain size distribution, stiffness, and interparticle friction. The grain shape itself is of particular importance. Microstructures are formed in the connection paths of contact points between grains. In this paper, the deformation of granular materials with different grain shapes was simulated using two-dimensional DEM under different stress-levels and densities. After analyzing the results, the authors investigated fabric changes. The evolution rule of stress-induced anisotropy and its limitation as well as the existence of a critical state of fabric are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miura K., Maeda K., Furukawa M., Toki S.: Physical characteristics of sands with different primary properties. Soils Found. 37(3), 53–64 (1997)

    Google Scholar 

  2. Miura K., Maeda K., Furukawa M., Toki S.: Mechanical characteristics of sands with different primary properties. Soils Found. 38(4), 159–172 (1998)

    Google Scholar 

  3. Maeda K., Miura K.: Confining stress dependency of mechanical properties of sands. Soils Found. 39(1), 53–68 (1999)

    Google Scholar 

  4. Maeda K., Miura K.: Relative density dependency of mechanical properties of sands. Soils Found. 39(1), 69–80 (1999)

    Google Scholar 

  5. Oda M.: Co-ordination number and its relation to shear strength of granular material. Soils Found. 17(2), 29–42 (1977)

    MathSciNet  Google Scholar 

  6. Oda M., Nemat-Nasser S., Konishi J.: Stress-induced anisotropy in granular masses. Soils Found. 25(3), 85–97 (1985)

    Google Scholar 

  7. Maeda K., Miura K., Toki S.: Mechanical properties of elliptic microstructure formed in granular materials. Soils Found. 35(2), 1–13 (1995)

    Google Scholar 

  8. Kuhn M.R.: Heterogeneity and patterning in the quasistatic behavior of granular materials. Granul. Matter 4(4), 155–166 (2003)

    Article  MATH  Google Scholar 

  9. Radekel C., Bagi K., Paláncz B., Stoyan D.: On probability distributions of contact force magnitudes in loaded dense granular media. Granul. Matter 6(1), 17–26 (2004)

    Google Scholar 

  10. Peñal A.A., García-Rojo R., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9(3), 279–291 (2007)

    Article  Google Scholar 

  11. Luding S., Lätzel M., Volk W., Diebels S., Herrmann H.J.: From discrete element simulations to a continuum model. Comp. Meth. Appl. Mech. Eng. 191, 21–28 (2001)

    Article  MATH  Google Scholar 

  12. Luding S.: Micro-macro transition for anisotropic, frictional granular packings. Int. J. Sol. Struct. 41, 5821–5836 (2004)

    Article  MATH  Google Scholar 

  13. Tordesillas, A., Shi, J., Muhlhais, H.: Noncoaxiality and force chain evolution. Int. J. Eng. Sci., doi:10.1016/j.ujengsci.2008.12.011 (2009)

  14. Tordesillas A., Zhang J., Behringer R.: Buckling force chains in dense granular assemblies: physical and numerical experiments. Geomech. Geoeng. 4(1), 3–16 (2009)

    Article  Google Scholar 

  15. Voivret C., Radjaï F., Delenne J.-Y., El Youssoufi M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102(17), 178001 (2009)

    Article  ADS  Google Scholar 

  16. Wood D.M., Maeda K.: Changing grading of soil: effect on critical states. Acta Geotechnica 3(1), 3–14 (2008)

    Article  Google Scholar 

  17. Wood M.D., Maeda K., Nukudani E.: Modelling mechanical consequence of erosion. Geotechnique 60(6), 447–457 (2010)

    Article  Google Scholar 

  18. Maeda K., Hirabayashi H.: Influence of grain properties on macro mechanical behaviors of granular media by DEM. J. Appl. Mech. JSCE 9, 623–630 (2006)

    Google Scholar 

  19. Cundall P.A., Strack O.D.L.: A discrete model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  20. Thomas P.A., Bray J.D.: Capturing nonspherical shape of granular media with disk clusters. J. Geotech. Geoenviron. Eng. ASCE 125(3), 169–178 (1999)

    Article  Google Scholar 

  21. Jiang M.J., Yu H.-S., Harris D.A.: Novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  22. Jiang M.J., Leroueil S.M., ASCE , Zhu H.-H., Yu H.-S., Konrad J.M.: Two-dimensional discrete element theory for rough particles. Int. J. Geomech. ASCE 9(1), 20–33 (2009)

    Article  Google Scholar 

  23. Lu M., McDowell G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1–2), 69–80 (2007)

    Google Scholar 

  24. Pena A.A., Garcia-Rojo R., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9(3–4), 279–291 (2007)

    Article  Google Scholar 

  25. Salot C., Gotteland P., Villard P.: Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granul. Matter 11(4), 221–236 (2009)

    Article  Google Scholar 

  26. Chang C.S., Chao S.J., Chang Y.: Estimates of elastic moduli for granular material with anisotropic random packing structure. Int. J. Solids Struct. 32(14), 1989–2008 (1995)

    Article  MATH  Google Scholar 

  27. Satake, M.: Fabric tensor in granular materials. IUTAM Conf on deformation and failure of granular materials 63–68 (1982)

  28. Rowe P.W.: The stress dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A. 269, 500–527 (1962)

    Article  ADS  Google Scholar 

  29. Wood M.D.: Soils Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  30. Zhang L., Thornton C.: Characteristics of Granular Media at the ‘Critical State’, Powder & Grains 2005, pp. 267–270. Taylor & Francis Group, London (2005)

    Google Scholar 

  31. Rothenburg L., Krupt N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41(21), 5763–5774 (2004)

    Article  MATH  Google Scholar 

  32. Nougier-Lehon C., Vincens E., Cambou B.: Structural changes in granular materials: the case of irregular polygonal particles. Int. J. Solids Struct. 42(24–25), 6356–6375 (2005)

    Article  Google Scholar 

  33. Huang Z., Yang Z., Zhen-yu Wang Z.: Discrete element modeling of sand behavior in a biaxial shear test. J. Zhejiang Univ. Sci. A 9(9), 1176–1183 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Maeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, K., Sakai, H., Kondo, A. et al. Stress-chain based micromechanics of sand with grain shape effect. Granular Matter 12, 499–505 (2010). https://doi.org/10.1007/s10035-010-0208-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0208-5

Keywords

Navigation