Skip to main content
Log in

A method to model realistic particle shape and inertia in DEM

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A simple and fast original method to create irregular particle shapes for the discrete element method using overlapping spheres is described. The effects of its parameters on the resolution of the particle shape are discussed. Overlapping spheres induce a non-uniform density inside the particle leading to incorrect moments of inertia and therefore rotational behaviour. A simple method to reduce the error in the principal moments of inertia which acts on the individual densities of the spheres is also described. The pertinence of the density correction is illustrated by the case of free falling ballast particles forming a heap on a flat surface. In addition to improve behaviour, the correction reduces also computational time. The model is then used to analyse the interaction between ballast and geogrid by simulating pull-out tests. The pulling force results show that the model apprehends better the ballast geogrid interlocking than models with simple representation of the shape of the particles. It points out the importance of modelling accurately the shape of particles in discrete element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEM:

Discrete element method

References

  1. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  2. Thomas P.A., Bray J.D.: Capturing nonspherical shape of granular media with disk clusters. J. Geotech. Geoenviron. Eng. 125, 169–178 (1999)

    Article  Google Scholar 

  3. Iwashita K., Oda M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124, 285–292 (1998)

    Article  Google Scholar 

  4. Iwashita K., Oda M.: Micro-deformation mechanism of shear band process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)

    Article  Google Scholar 

  5. Jiang M.J., Yu H.-S., Harris D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  6. Jiang M.J., Leroueil S., Zhu H-H., Yu H.-S., Konrad J.M.: Two-dimensional discrete element theory for rough particles. Int. J. Geomech. 9(1), 20–33 (2009)

    Article  Google Scholar 

  7. Williams J.R., Pentland A.P.: Superquadric and modal dynamics for discrete elements in interactive design. Eng. Comput. 9, 115–127 (1992)

    Article  Google Scholar 

  8. Lin X., Ng T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2), 319–329 (1997)

    Google Scholar 

  9. Mustoe G.G.W., Miyata M.: Material flow analyses of noncircular-shaped granular media using discrete element methods. J. Eng. Mech. 127(10), 1017–1026 (2001)

    Article  Google Scholar 

  10. Cleary P.W.: Large scale industrial DEM modelling. Eng. Comput. 21, 169–204 (2004)

    Article  MATH  Google Scholar 

  11. Pournin L., Weber M., Tsukahara M., Ferrez J.-A., Ramaioli M., Liebling Th.M.: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2-3), 119–126 (2005)

    Article  MATH  Google Scholar 

  12. Hart R., Cundall P.A., Lemos J.: Formulation of a three-dimensional dictinct element model – Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 117–125 (1988)

    Google Scholar 

  13. Abou-Chakra H., Baxter J., Tüzün U.: Three-dimensional particle shape descriptors for computer simulation of non-spherical particulate assemblies. Adv. Powder Technol. 15(1), 63–77 (2004)

    Article  Google Scholar 

  14. Lee Y., Fang C., Tsou Y.-R., Lu L.-S., Yang C.-T.: A packing algorithm for three-dimensional convex particles. Granul. Matter 11(5), 307–315 (2009)

    Article  Google Scholar 

  15. McDowell G.R., Harireche O.: Discrete element modelling of yielding and normal compression of sand. Géotechnique 52(4), 299–304 (2002)

    Google Scholar 

  16. Thornton C., Liu L.: How do particles break?. Powder Technol. 143(144), 110–116 (2004)

    Google Scholar 

  17. Wang L., Park J., Fu Y.: Representation of real particles for DEM simulation using X-ray tomography. Construct. Build. Mater. 21, 338–346 (2007)

    Article  Google Scholar 

  18. Lu M., McDowell G.R.: The importance of modelling ballast particle shape in DEM. Granul. Matter 9(1–2), 71–82 (2007)

    Google Scholar 

  19. Matsushima, T., Saomoto, H., Matsumoto, M, Toda, K., Yamada, Y.: Discrete element simulation of an assembly of irregularly-shaped grains: quantitative comparison with experiments. In: 16th ASCE Engineering Mechanics Conference, July 16–18, 2003 University of Washington, Seattle (2003)

  20. Price, M., Murariu, V., Morrison, G.: Sphere clump generation and trajectory comparison for real particles. In: Discrete Element Methods 2007 Conference, 27–29 August 2007, Brisbane, Australia (2007)

  21. Ferellec J.-F., McDowell G.R.: A simple method to create complex particle shapes for DEM. Geomech. Geoeng. 3(3), 211–216 (2008)

    Article  Google Scholar 

  22. Ferellec J.-F., McDowell G.R.: Modelling realistic shape and particle inertia in DEM. Géotechnique 60(3), 227–232 (2010)

    Article  Google Scholar 

  23. Selig E.T., Walters J.M.: Track Geotechnology and Substructure Management. Thomas Telford, London (1993)

    Google Scholar 

  24. McDowell, G.R., Harireche, O., Konietzky, H., Brown, S.F., Thom, N.H.: Discrete element modelling of geogrid-reinforced aggregates. In: Proceedings ICE—Geotechnical Engineering, 159 (GE1), pp. 35-48 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn R. McDowell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferellec, JF., McDowell, G.R. A method to model realistic particle shape and inertia in DEM. Granular Matter 12, 459–467 (2010). https://doi.org/10.1007/s10035-010-0205-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0205-8

Keywords

Navigation