Skip to main content
Log in

Single particle fragmentation in ultrasound assisted impact comminution

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Impact fragmentation is the underlying principle of comminution milling of dry, bulk solids. Unfortunately the outcome of the fragmentation process is more or less determined by the dimensionality of the impactor and its impact velocity. Since fragmentation is dominated by interfering shock waves, manipulating traveling shock waves and adding energy to the system during its fragmentation could be a promising approach to manipulate fragment mass distributions and energy input. In a former study we explored mechanisms in impact fragmentation of spheres, using a three-dimensional Discrete Element Model (DEM) Carmona et al. (Phys Rev E 77:051302, 2008). This work is focused on studying how single spheres fragment when impacted on a planar vibrating target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmona H., Wittel F.K., Kun K., Herrmann H.: Fragmentation processes in impact of spheres. Phys. Rev. E 77, 051302 (2008)

    Article  ADS  Google Scholar 

  2. Tavares L.: Optimum routes for particle breakage by impact. Powder Technol. 142, 81–91 (2004)

    Article  Google Scholar 

  3. Schubert W., Khanal M., Tomas J.: Impact crushing of particle-particle compounds—experiment and simulation. Int. J. Miner. Process. 75, 41–52 (2005)

    Article  Google Scholar 

  4. Tomas J., Schreier M., Gröger T., Ehlers S.: Impact crushing of concrete for liberation and recycling. Powder Technol. 105, 39–51 (1999)

    Article  Google Scholar 

  5. Arbiter N., Harris C., Stamboltzis G.: Single fracture of brittle spheres. Trans. Soc. Min. Eng. 244, 118–133 (1969)

    Google Scholar 

  6. Wu S., Chau K., Yu T.: Crushing and fragmentation of brittle spheres under double impact test. Powder Technol. 143(144), 41–55 (2004)

    Google Scholar 

  7. Andrews E., Kim K.S.: Threshold conditions for dynamic fragmentation of ceramic particles. Mech. Mater. 29, 161–180 (1998)

    Article  Google Scholar 

  8. Antonyuk S., Khanal M., Tomas J., Heinrich S., Mörl L.: breakage of spherical granules: experimental study and DEM simulation. Chem. Eng. Process. 45, 838–856 (2006)

    Article  Google Scholar 

  9. Salman A., Biggs C., Fu J., Angyal I., Szabo M., Hounslow M.: An experimental investigation of particle fragmentation using single particle impact studies. Powder Technol. 128, 36–46 (2002)

    Article  Google Scholar 

  10. Andrews E., Kim K.S.: Threshold conditions for dynamic fragmentation of glass particles. Mech. Mater. 31, 689–703 (1999)

    Article  Google Scholar 

  11. Cheong Y., Reynolds G., Salman A., Hounslow M.: Modelling fragment size distribution using two-parameter Weibull equation. Int. J. Min. Process. 74, S227–S237 (2004)

    Article  Google Scholar 

  12. Salman A., Gorham D.: The fracture of glass spheres. Powder Technol. 107, 179–185 (2000)

    Article  Google Scholar 

  13. Majzoub R., Chaudhri M.: High-speed photography of low-velocity impact cracking of solid spheres. Philos. Mag. Lett. 80(6), 387–439 (2000)

    Article  Google Scholar 

  14. Schönert K.: Breakage of spheres and circular discs. Powder Technol. 143(144), 2–18 (2004)

    Google Scholar 

  15. Behera B., Kun F., McNamara S., Herrmann H.J.: Fragmentation of a circular disc by impact on a frictionless plate. Condens. Matter 17, S2439–S2456 (2005)

    Article  ADS  Google Scholar 

  16. Thornton C., Yin K., Adams M.: Numerical simultion of the impact fracture and fragmentation of agglomerates. J. Phys. D Appl. Phys. 29, 424–435 (1996)

    Article  ADS  Google Scholar 

  17. Khanal M., Schubert W., Tomas J.: Ball impact and crack propagation—simulation of particle compound material. Granul. Matter 5, 177–184 (2004)

    Article  Google Scholar 

  18. Kun F., Herrmann H.J.: A study of fragmentation processes using a discrete element method. Comp. Methods Appl. Mech. Eng. 138, 3–18 (1996)

    Article  MATH  Google Scholar 

  19. Kun F., Herrmann H.J.: Transition from damage to fragmentation in collision of solids. Phys. Rev. E 59(3), 2623–2632 (1999)

    Article  ADS  Google Scholar 

  20. Kun F., D’Addetta G., Herrmann H.J., Ramm E.: Two-dimensional dynamic simulation of fracture and fragmentation of solids. Comp. Assist. Mech. Eng. Sci. 6, 385–440 (1999)

    MATH  Google Scholar 

  21. Potapov A., Campbell C.: A three-dimensional simulation of brittle solid fracture. Int. J. Mod. Phys. C 7(5), 717–729 (1996)

    Article  ADS  Google Scholar 

  22. Potapov A., Campbell C.: Parametric dependence of particle breakage mechanisms. Powder Technol. 120(3), 164–174 (2001)

    Article  Google Scholar 

  23. Kafui K., Thornton C.: Numerical simulations of impact breakage of a spherical crystalline agglomerate. Powder Technol. 109, 113–132 (2000)

    Article  Google Scholar 

  24. Mishra B., Thornton C.: Impact breakage of particle agglomerates. Int. J. Miner. Process. 61, 225–239 (2001)

    Article  Google Scholar 

  25. Odderschede L., Dimon P., Bohr J.: Self-organized criticality in fragmentation. PRL 71(19), 3107–3110 (1993)

    Article  ADS  Google Scholar 

  26. Turcotte D.: Fractals and fragmentation. J. Geophys. Res. 91(B2), 1921–1926 (1986)

    Article  ADS  Google Scholar 

  27. Åström J., Holian B., Timonen J.: Universality in fragmentation. PRL 84(14), 3061–3064 (2000)

    Article  ADS  Google Scholar 

  28. Åström J., Ouchterlony F., Linna R., Timonen J.: Universal fragmentation in d dimensions. PRL 92(24), 245506 (2004)

    Article  ADS  Google Scholar 

  29. Åström J.: Statistical models of brittle fragmentation. Adv. Phys. 55(3–4), 247–278 (2006)

    Article  Google Scholar 

  30. Inaoka H., Takayasu H.: Universal fragment size distribution in a numerical model of impact fracture. Physica A 229, 5–25 (1996)

    Article  ADS  Google Scholar 

  31. Linna R., Åström J., Timonen J.: Dimensional effects in dynamic fragmentation of brittle materials. Phys. Rev. E 72, 015601 (R) (2005)

    Article  ADS  Google Scholar 

  32. Cundall P., Strack O.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  33. Bićanić, N.: Discrete element methods. In: Stein, E., Borst, R., Hughes, T. Encyclopedia of Computational Mechanics: Fundametals, pp. 311–337. Cambridge University Press, Cambridge (2004)

  34. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.T.: The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4), 469–483. www.qhull.org (1996)

    Google Scholar 

  35. Kienzler R., Schmitt W.: On single-particle comminution: numerical analysis of compressed spheres. Powder Technol. 61, 29–38 (1990)

    Article  Google Scholar 

  36. Thornton C., Ciomoncos M., Adams M.: Numerical simulation of diametrical compression tests on agglomerates. Powder Technol. 140, 258–267 (2004)

    Article  Google Scholar 

  37. Molinari J., Gazonas G., Raghupathy R., Rusinek A., Zhou F.: The cohesive element approach to dynamic fragmentation: The question of energy convergence. Int. J. Num. Methods Eng. 69, 484–503 (2007)

    Article  Google Scholar 

  38. Mott N.: Fragmentation of spherical cases. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 189, 300–308 (1946)

    Article  ADS  Google Scholar 

  39. Kun F., Wittel F.K., Herrmann H.J., Kröplin B.H.: Scaling behavior of fragment shapes. PRL 96, 025504 (2006)

    Article  ADS  Google Scholar 

  40. Wittel F.K., Kun F., Herrmann H.J., Kröplin B.H.: Fragmentation of shells. PRL 93(3), 035504 (2004)

    Article  ADS  Google Scholar 

  41. Wittel F.K., Kun F., Herrmann H.J., Kröplin B.H.: Breakup of shells under explosion and impact. Phys. Rev. E 71, 016108 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk K. Wittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittel, F.K. Single particle fragmentation in ultrasound assisted impact comminution. Granular Matter 12, 447–455 (2010). https://doi.org/10.1007/s10035-010-0189-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0189-4

Keywords

Navigation