Skip to main content
Log in

Stochastic generation of particle structures with controlled degree of heterogeneity

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The recently developed void expansion method (VEM) allows for an efficient generation of porous packings of spherical particles over a wide range of volume fractions. The method is based on a random placement of the structural particles under addition of much smaller “void-particles” whose radii are repeatedly increased during the void expansion. Thereby, they rearrange the structural particles until formation of a dense particle packing and introduce local heterogeneities in the structure. In this paper, microstructures with volume fractions between 0.4 and 0.6 produced by VEM are analyzed with respect to their degree of heterogeneity (DOH). In particular, the influence of the void- to structural particle number ratio, which constitutes a principal VEM-parameter, on the DOH is studied. The DOH is quantified using the pore size distribution, the Voronoi volume distribution and the density-fluctuation method in conjunction with fit functions or integral measures. This analysis has revealed that for volume fractions between 0.4 and 0.55 the void-particle number allows for a quasi-continuous adjustment of the DOH. Additionally, the DOH-range of VEM-generated microstructures with a volume fraction of 0.4 is compared to the range covered by microstructures generated using previous Brownian dynamics simulations, which represent the structure of coagulated colloidal suspensions. Both sets of microstructures cover similarly broad and overlapping DOH-ranges, which allows concluding that VEM is an efficient method to stochastically reproduce colloidal microstructures with varying DOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yun T.S., Santamarina J.C., Ruppel C.: Mechanical properties of sand, silt and clay containing tetrahydrofuran hydrate. J. Geophys. Res. 112, B04106 (2007)

    Article  Google Scholar 

  2. Touiti L., Bouassida M., Van Impe W.: Discussion on Tunis soft soil sensitivity. Geotech. Geol. Eng. 27(5), 631–643 (2009)

    Article  Google Scholar 

  3. Mezzenga R., Schurtenberger P., Burbidge A., Michel M.: Understanding foods as soft materials. Nat. Mater. 4, 729–740 (2005)

    Article  ADS  Google Scholar 

  4. Barbesta F., Bousfield D.W., Rigdahl M.: Modeling of rheological properties of coating colors. J. Rheol. 45(1), 139–160 (2001)

    Article  ADS  Google Scholar 

  5. Lee Y.S., Wagner N.J.: Dynamic properties of shear thickening colloidal suspensions. Rheol. Acta 42(3), 199–208 (2003)

    Google Scholar 

  6. Barnes H.A.: Thixotropy–a review. J. Non-Newtonian Fluid Mech. 70, 1–33 (1997)

    Article  MathSciNet  Google Scholar 

  7. Abou B., Bonn D., Meunier J.: Aging dynamics in a colloidal glass. Phys. Rev. E 64(2), 021510 (2001)

    Article  ADS  Google Scholar 

  8. Zaccone A., Lattuada M., Wu H., Morbidelli M.: Theoretical elastic moduli for disordered packings of interconnected spheres. J. Chem. Phys. 127(17), 174512 (2007)

    Article  ADS  Google Scholar 

  9. Gardiner B.S., Tordesillas A.: Effect of particle size distribution in a three-dimensional micropolar continuum model of granular media. Powder Technol. 161(2), 110–121 (2006)

    Article  Google Scholar 

  10. Silbert L.E., Ertaş D., Grest G.S., Halsey T.C., Levine D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65(3), 031304 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  11. Martin C.L., Bordia R.K.: Influence of adhesion and friction on the geometry of packings of spherical particles. Phys. Rev. E 77(3), 031307 (2008)

    Article  ADS  Google Scholar 

  12. Atman A.P.F., Brunet P., Geng J., Reydellet G., Combe G., Claudin P., Behringer R.P., Clément E.: Sensitivity of the stress response function to packing preparation. J. Phys. Condens. Matter 17, S2391–S2403 (2005)

    Article  ADS  Google Scholar 

  13. Franks G.V., Zhou Y., Yan Y., Jameson G., Biggs S.: Effect of aggregate size on sediment bed rheological properties. Phys. Chem. Chem. Phys. 6(18), 4490–4498 (2004)

    Article  Google Scholar 

  14. Wyss H.M., Tervoort E.V., Gauckler L.J.: Mechanics and microstructures of concentrated particle gels. J. Am. Ceram. Soc. 88(9), 2337–2348 (2005)

    Article  Google Scholar 

  15. Wyss H.M., Tervoort E., Meier L.P., Müller M., Gauckler L.J.: Relation between microstructure and mechanical behavior of concentrated silica gels. J. Colloid Interface Sci. 273(2), 455–462 (2004)

    Article  Google Scholar 

  16. Wyss H.M., Deliormanli A.M., Tervoort E., Gauckler L.J.: Influence of microstructure on the rheological behavior of dense particle gels. AIChE J. 51(1), 134–141 (2005)

    Article  Google Scholar 

  17. Gauckler L.J., Graule Th., Baader F.: Ceramic forming using enzyme catalyzed reactions. Mater. Chem. Phys. 61(1), 78–102 (1999)

    Article  Google Scholar 

  18. Tervoort E., Tervoort T.A., Gauckler L.J.: Chemical aspects of direct coagulation casting of alumina suspensions. J. Am. Ceram. Soc. 87(8), 1530–1535 (2004)

    Article  Google Scholar 

  19. Hesselbarth D., Tervoort E., Urban C., Gauckler L.J.: Mechanical properties of coagulated wet particle networks with alkali-swellable thickeners. J. Am. Ceram. Soc. 84(8), 1689–1695 (2001)

    Article  Google Scholar 

  20. Agnolin I., Roux J.-N.: Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks. Phys. Rev. E 76(1), 061302 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. Jerkins M., Schröter M., Swinney H.L., Senden T.J., Saadatfar M., Aste T.: Onset of mechanical stability in random packings of frictional spheres. Phys. Rev. Lett. 101(1), 018301 (2008)

    Article  ADS  Google Scholar 

  22. Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7(1), 31–43 (2005)

    Article  MATH  Google Scholar 

  23. Luding, S.: Contact models for very loose granular materials. In: Eberhard, P. (ed.) Symposium on Multiscale Problems in Multibody System Contacts, pp. 135–150. Springer, Heidelberg, ISBN 978-1-4020-5980-3 (2007)

  24. Schenker I., Filser F.T., Herrmann H.J., Gauckler L.J.: Generation of porous particle structures using the void expansion method. Granul. Matter 11(3), 201–208 (2009)

    Article  Google Scholar 

  25. Schenker I., Filser F.T., Aste T., Herrmann H.J., Gauckler L.J.: Quantification of the heterogeneity of particle packings. Phys. Rev. E 80(2), 021302 (2009)

    Article  ADS  Google Scholar 

  26. Hütter M.: Local structure evolution in particle network formation studied by Brownian dynamics simulation. J. Colloid Interface Sci. 231(2), 337–350 (2000)

    Article  Google Scholar 

  27. Hütter, M.: Brownian dynamics simulation of stable and of coagulating colloids in aqueous suspension, Ph.D. thesis no. 13107, ETH Zurich, Switzerland (1999)

  28. Russel, W.B., Saville, D.A., Schowalter, W.R.: Colloidal dispersions, Cambridge University Press, New York (March 1989)

  29. PFC3D User’s Manual, Itasca Consulting Group, Inc., Minneapolis, Minnesota, USA (1995)

  30. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  31. Brown E.T.: Analytical and Computational Methods in Engineering Rock Mechanics, Ed. Allen & Unwin, London (1987)

    Google Scholar 

  32. Song C., Wang P., Makse H.A.: A phase diagram for jammed matter. Nature 453(29), 629–632 (2008)

    Article  ADS  Google Scholar 

  33. Torquato S., Lu B., Rubinstein J.: Nearest-neighbor distribution functions in many-body systems. Phys. Rev. A 41(4), 2059–2075 (1990)

    Article  ADS  Google Scholar 

  34. Voronoi G.: Recherches sur les paralléloèdres primitives. J. Reine Angew. Math. 134, 198–287 (1908)

    MATH  Google Scholar 

  35. Barber C.B., Dobkin D.P., Huhdanpaa H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Aste T., Di Matteo T.: Emergence of Gamma distributions in granular materials and packing models. Phys. Rev. E 77(2), 021309 (2008)

    Article  ADS  Google Scholar 

  37. Anikeenko A.V., Medvedev N.N., Aste T.: Structural and entropic insights into the nature of the random-close-packing limit. Phys. Rev. E 77(3), 031101 (2008)

    Article  ADS  Google Scholar 

  38. Aste T., Di Matteo T.: Structural transitions in granular packs: statistical mechanics and statistical geometry investigations. Eur. Phys. J. B 64, 511–517 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwan Schenker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenker, I., Filser, F.T. & Gauckler, L.J. Stochastic generation of particle structures with controlled degree of heterogeneity. Granular Matter 12, 437–446 (2010). https://doi.org/10.1007/s10035-010-0188-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0188-5

Keywords

Navigation