Skip to main content
Log in

Electrical conduction and Joule effect in one-dimensional chains of metallic beads: hysteresis under cycling DC currents and influence of electromagnetic pulses

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The passage of an electric current through a chain of metallic beads causes a contact temperature rise and a permanent change of the contact area between beads, which in turn modify the electrical resistance of the chain. These effects are analyzed by measuring the voltage–current characteristics of a chain. These characteristics exhibit nonlinear and hysteretic behaviors. In this article, we particularly focus on the electrical behavior under cycles of increasing and decreasing current. Experimental results compare well with those of a model derived on the assumption of equilibrium between Joule heating in the contact between beads and thermal dissipation by conduction within the material. It is shown however that models based on the WiedemannFranz’s law fail to describe the electro-thermo-mechanical behaviors of chains of beads carrying currents and submitted to a small static compression force. We finally analyze the strong modifications of the electrical behavior of a chain of beads subjected to electromagnetic perturbations produced by a spark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duran J.: Sands, Powders and Grains. Springer-Verlag, New York (1999)

    Google Scholar 

  2. Kakalios J.: Granular physics or nonlinear dynamics in a sandbox. Am. J. Phys. 73(1), 8–22 (2005)

    Article  ADS  Google Scholar 

  3. Nesterenko V.F.: Dynamics of Heterogeneous Materials. Springer-Verlag, New York (2001)

    Google Scholar 

  4. Tournat V., Zaitsev V., Gusev V., Nazarov V., Béquin P., Castagnède B.: Probing weak forces in granular media through nonlinear dynamic dilatancy: clapping contacts and polarization anisotropy. Phys. Rev. Lett. 92, 085502 (2004)

    Article  ADS  Google Scholar 

  5. Sen S., Hong J., Avalos E., Doney R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  6. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  7. Holm R.: Electric Contacts, 3rd edn. Springer, Berlin (2000)

    Google Scholar 

  8. Féchant L.: Le contact électrique. Hermès, Paris (1996)

    Google Scholar 

  9. Bowden F.P., Williamson J.B.P.: Electrical conduction in solids. Part I: influence of the passage of current on the contact between solids. Proc. R. Soc. Lond. Ser. A 246(1244), 1–12 (1958)

    Article  ADS  Google Scholar 

  10. Greenwood J.A., Williamson J.B.P.: Electrical conduction in solids. Part II: theory of temperature-dependent conductors. Proc. R. Soc. Lond. Ser. A 246(1244), 13–31 (1958)

    Article  ADS  Google Scholar 

  11. Greenwood J.A., Harris J.: Electrical conduction in solids. Part III: the contact of iron surfaces. Proc. R. Soc. Lond. Ser. A 257(1288), 83–97 (1960)

    Article  ADS  Google Scholar 

  12. Timsit R.S.: Ch.1 electrical contact resistance: fundamental principles. In: Slade, P.G. Electrical Contacts—Principles and Applications, CRC Press, New York (1999)

  13. Falcon E., Castaing B., Creyssels M.: Nonlinear electrical conductivity in a 1D granular medium. Eur. Phys. J. B 38, 475–483 (2004)

    Article  ADS  Google Scholar 

  14. Falcon E., Castaing B.: Electrical conductivity in granular media and Branly’s coherer: a simple experiment. Am. J. Phys. 73(4), 302–307 (2005)

    Article  ADS  Google Scholar 

  15. Géminard J.-C., Bouraya D., Gayvallet H.: Thermal conductivity associated with a bead-bead contact decorated by a liquid bridge. Eur. Phys. J. B 48, 509–517 (2005)

    Article  ADS  Google Scholar 

  16. Creyssels M., Dorbolo S., Merlen A., Laroche C., Castaing B., Falcon E.: Some aspects of electrical conduction in granular systems of various dimensions. Eur. Phys. J. E 23, 255–264 (2007)

    Article  Google Scholar 

  17. Raizer Y.P.: Gas Discharge Physics. Springer-Verlag, Berlin (1991)

    Google Scholar 

  18. Dorbolo S., Ausloos M., Vandewalle N.: Hysteretic behavior in metallic granular matter. Appl. Phys. Lett. 81(5), 936–938 (2002)

    Article  ADS  Google Scholar 

  19. Dorbolo, S., Ausloos, M., Vandewalle, N., Houssa, M.: Aging process of electrical contacts in granular matter. Appl. Phys. Lett. 94, 1040302(R) (2003)

  20. Dorbolo S., Ausloos M., Vandewalle N.: Reexamination of the Branly effect. Phys. Rev. E 67(12), 7835–7838 (2003)

    Google Scholar 

  21. Dorbolo S., Merlen A., Creyssels M., Vandewalle N., Castaing B., Falcon E.: Effects of electromagnetic waves on the electrical properties of contacts between grains. EPL 79(54001), 7835–7838 (2007)

    Google Scholar 

  22. Davis, J.R. (eds): ASM Specialty Handbook: Stainless Steels. ASM International, New York (1994)

    Google Scholar 

  23. Omel’chenko V.T.: Determination of the excess temperature of electrical contacts with continous current variation. J. Eng. Phys. 10(1), 45–47 (1966)

    Article  Google Scholar 

  24. Fournet G.: Phenomena in conductors having temperature dependent electrical and thermal conductivities. J. Phys. III 7, 2003–2029 (1997)

    Article  Google Scholar 

  25. European Stainless Steel Development Association.: Stainless Steel: Tables of Technical Properties. http://www.euro-inox.org (2000)

  26. Gale, W.F., Totemeir, T.C. (eds): Smithells Metals Reference Book, 8th edn. ASM International, London (2004)

    Google Scholar 

  27. Tan X., Conway P.P., Sarvar F.: Thermo-mechanical properties and regression models of alloys: AISI 305, CK 60, CuBe2 and laiton MS 63. J. Mater. Process. Technol. 168, 152–163 (2005)

    Google Scholar 

  28. Ayrault, C., Béquin, P., Legros, M.: Experimental study of a spark discharge as an acoustic source. In: Proceedings of 19th International Congress on Acoustics. I.C.A., Madrid, Spain (2007)

  29. Job S., Melo F., Sokolow A., Sen S.: How hertzian solitary waves interact with boundaries in a 1d granular medium. Phys. Rev. Lett. 94, 178002 (2005)

    Article  ADS  Google Scholar 

  30. Daraio C., Nesterenko V.F., Herbold E.B., Jin S.: Strongly nonlinear waves in a chain of teflon beads. Phys. Rev. E 72, 016603 (2005)

    Article  ADS  Google Scholar 

  31. Hladky-Hennion A.-C., de Billy M.: Experimental validation of band gaps and localization in a one-dimensional diatomic phononic crystal. J. Acoust. Soc. Am. 122, 2594–2600 (2007)

    Article  ADS  Google Scholar 

  32. Porter M.A., Daraio C., Herbold E.B., Szelengowicz I., Kevrekidis P.G.: Highly nonlinear solitary waves in phononic crystal dimers. Phys. Rev. E 77, 015601(R) (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Béquin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Béquin, P., Tournat, V. Electrical conduction and Joule effect in one-dimensional chains of metallic beads: hysteresis under cycling DC currents and influence of electromagnetic pulses. Granular Matter 12, 375–385 (2010). https://doi.org/10.1007/s10035-010-0185-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0185-8

Keywords

Navigation