Skip to main content
Log in

The influence of non-coaxiality on shear banding in viscous-plastic materials

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Many of the most important and commonly occurring, emergent geological structures such as shear bands, fault zones and folds may be understood as a consequence of changes in the type of the governing model equations. Such changes, or bifurcations, depend strongly on the details of the constitutive relationships including the presence of strain softening, thermal or chemical effects, and whether the flow rule is associated or non-associated, coaxial or non-coaxial. Here we focus on the influence of non-coaxiality of the flow rule on the development and evolution of shear bands. The term non-coaxial refers to the non-coincidence of the principal axes of the stress and of the plastic strain rate tensor. Non coaxial plasticity models were originally proposed by Josselin de Jong and A. J. M. Spencer. The geometric structure of most non-coaxial models is defined by the assumption that the plastic deformation is carried by one (single slip) or two (double slip) slip systems that are inclined at \({\pm (\pi /4+\nu /2), 0\leq \nu \leq \phi }\) to the less compressive principal stress axis; \({\phi }\) is the internal angle of friction of the material. Both cases –single and double slip– are considered here. A particular feature of the double slip model is the appearance of an additional variable requiring an additional constitutive relationship. Geometrically, the additional variable may be interpreted as a spin. Spencer assumed that, in 2D, the additional spin is equal to the rate of rotation of the principal axes of the stress tensor. Here we show that Spencer’s assumption is very similar (up to a factor of proportionality) to the assumption that the internal slip systems are material. We also propose an alternative closure, based on experimental observations, indicating that the ratio between the average particle spin and the spin of a spatial element of the granular assembly is constant, in simple shear. Finally, we propose a closure for the double slip model within the framework of a Cosserat Continuum theory. In a Cosserat continuum, a material point possesses the degrees of freedom of an infinitesimal rigid body: three translations and three rotations. In this case the indeterminacy of the double slip model is removed by the angular momentum balance equation associated with the rotational degrees of freedom. We propose constitutive relationships for the Cosserat model and illustrate the behavior of the model by means of an analytical solution of the simple shear problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anand L.: Plane deformations of ideal granular materials. J. Mech. Phys. Solids 31(2), 105–122 (1983)

    Article  MATH  ADS  Google Scholar 

  2. Biot M.A.: The Mechanics of Incremental Deformations. Wiley, New York, London, Sydney (1965)

    Google Scholar 

  3. Bardet J.P., Vardoulakis I.: The asymmetry of stress in granular materials. Int. J. Solids Struct. 38(2), 353–367 (2001)

    Article  MATH  Google Scholar 

  4. Buck W.R.: Models of continental lithosphere extension. J. Geophys. Res. 96(B12), 20161–20178 (1991)

    Article  ADS  Google Scholar 

  5. Chen W.F.: Limit Analysis and Soil Plasticity. Elsevier, Amsterdam (1975)

    MATH  Google Scholar 

  6. Tordesillas, A., Shi, J., Muhlhaus, H.B.: Non-coaxiality and force chain evolution. Int. J. Eng. Sci. (2009). doi:10.1016/j.ijengsci.2008.12.011

  7. De Josselin de Jong G.: The undefiniteness in kinematics for frictionmaterials. Proc. Conf. Earth Press. Probl., Brussels 1, 55–70 (1958)

    Google Scholar 

  8. De Josselin de Jong G.: The double sliding, free rotating model for granular assemblies. Geotechnique 21(3), 155–162 (1971)

    Google Scholar 

  9. England P.: Constraints on extension of continental lithosphere. J. Geophys. Res. 88(B2), 1145–1152 (1983)

    Article  ADS  Google Scholar 

  10. Eringen A.C.: Polar and non local field theories. In: Eringen, A.C. (eds) Continuum Physics, Academic Press, UK (1976)

    Google Scholar 

  11. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Math. 33, 295 (1997)

    Article  Google Scholar 

  12. Gibbs A.D.: Structural evolution of extensional basin margins. J. Geol. Soc. 141(4), 609–620 (1984). doi:10.1144/gsjgs.141.4.0609

    Article  Google Scholar 

  13. Gross L., Bourgouin L., Hale A.J., Mühlhaus H.-B.: Interface modeling in incompressible media using level sets in Escript. Phys. Earth Planet. Inter. 163(1–4), 23–34 (2007)

    Article  ADS  Google Scholar 

  14. Harris D.: A unified formulation for plasticity models of granular and other materials. Proc. R. Soc. Lond. A 450, 37–49 (1995)

    Article  MATH  ADS  Google Scholar 

  15. Hill R., Hutchinson J.W.: Bifurcation phenomena in the plane strain tension test. J. Mech. Phys. Solids 23, 239–264 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Hill R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  17. Lubliner J.: Plasticity Theory. Macmillan Publishing, New York (1990)

    MATH  Google Scholar 

  18. Jiang M.J., Harris D., Yu H.S.: Kinematic models for non-coaxial granular materials, Part I. Int. J. Numer. Anal. Meth. Geomech 29, 643–661 (2005)

    Article  MATH  Google Scholar 

  19. Jiang M.J.D., Harris D., Yu H.S.: Kinematic models for non-coaxial granular materials, Part II. Int. J. Numer. Anal. Meth. Geomech 29, 663–689 (2005)

    Article  MATH  Google Scholar 

  20. Lemiale V., Muhlhaus H.-B., Moresi L., Stafford J.: Phys. Earth Planet. Inter. 171(1–4), 177–186 (2008)

    Article  ADS  Google Scholar 

  21. Mehrabadi M.M.S.C., Cowin S.C.: On the double sliding free rotating model for the deformation of granular materials. J. Mech. Phys. Solids 29(4), 269–282 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kroener, E.: Mechanics of generalized continua. In: Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications. Springer, Freudenstadt, Stuttgart (1967)

  23. Matsuoka H.: A microscopic study on shear mechanism of granular materials. Soils Found 14, 29–43 (1974)

    Google Scholar 

  24. Moresi L., Mühlhaus H.-B.: Anisotropic viscous models of large-deformation Mohr-Coulomb failure. Philos. Mag. 86, 3287–3305 (2006)

    Article  ADS  Google Scholar 

  25. Mühlhaus H.-B., Vardoulakis I.: The thickness of shear bands in granular materials. Geotechnique 37, 271–283 (1987)

    Article  Google Scholar 

  26. Mühlhaus H.-B.: Application of cosserat theory in numerical solutions of limit load problems. Ing. Arch. 59, 124–137 (1989)

    Article  Google Scholar 

  27. Mühlhaus H.-B.: Stress and couple stress in a layered half plane with bending stiffness. Int. J. Numer. Anal. Meth. Geomechanics 14, 545–563 (1990)

    Article  Google Scholar 

  28. Mühlhaus, H.-B.: Continuum models for layered and blocky rock. Comprehensive Rock Engineering. Invited Chapter for Vol. II: Analysis and Design Methods, pp. 209–230. Pergamon Press (1993)

  29. Mühlhaus H.-B., Dufour F., Moresi L., Hobbs B.E.: A director theory for viscoelastic folding instabilities in multilayered rock. Int. J. Solids Struct. 39, 3675–3691 (2002)

    Article  MATH  Google Scholar 

  30. Ochiai H., Yamanouchi T., Tanabashi Y.: On the rotation of principal stress axes in simpleshear and its utilizations. In: Shahinpoor, M. (eds) Advances in the Mechanics and the Flow of Granular Materials, pp. 871–883. Trans Tech Publications, USA (1983)

    Google Scholar 

  31. Pasternak E., Muhlhaus H.-B.: Generalized homogenization procedure for granular materials. J. Eng. Math. 52, 199–229 (2005)

    MATH  MathSciNet  Google Scholar 

  32. Roscoe K.H.: An apparatus for the application of simple shear to soil samples. Proc. 3rd Int. Conf. Soil Mech. Found. Eng. Zuerich 1, 186–191 (1953)

    Google Scholar 

  33. Roscoe K.H., Bassett R.H., Cole E.R.: Principal axes observed during simple shear of asand. Proc. Geotech. Conf., Oslo 1, 231–237 (1967)

    Google Scholar 

  34. Roscoe K.H.: The influence of strains in soil mechanics. Geotechnique 20, 129–170 (1970)

    Article  Google Scholar 

  35. Rudnicki J.W., Rice J.R.: Conditions for the localization of deformation in pressure sensitive dilatant materials. J. Mech. Phys. Solids 23, 337–351 (1975)

    Google Scholar 

  36. Salencon J.: Application of the Theory of Plasticity in Soil Mechanics Ed. Wiley, New York (1977)

    Google Scholar 

  37. Spencer A.J.M.: A theory of the kinematics of ideal soils under plane strain conditions. J. Mech. Phys. Solids 12, 337–351 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Spencer A.J.M.: Deformation of Ideal Granular Materials, Mechanicsof Solids: The Rodney Hill Anniversary Volume, pp. 607–652. Pergamon Press, Oxford (1982)

    Google Scholar 

  39. Thornton C., Zhang L.: A numerical examination of shear banding and simple shear non-coaxial flow rules. Philos. Mag. 86, 3425–3452 (2006)

    Article  ADS  Google Scholar 

  40. Tvergaard V., Needleman A., Lo K.K.: Flow localization in the plane strain tensile test. J. Mech. Phys. Solids 29(2), 115–142 (1981)

    Article  MATH  ADS  Google Scholar 

  41. Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics. Chapman and Hall, London (1995)

    Google Scholar 

  42. Vermeer P.A., de Borst R.: Non associated plasticity for soils, concrete and rock. Heron 29, 1–62 (1984)

    Google Scholar 

  43. Walsh J., Watterson J., Yielding G.: The importance of small-scale faulting in regional extension. Nature 351, 391–393 (1991)

    Article  ADS  Google Scholar 

  44. Watts A.B., Bodine J.H., Steckler M.S.: Observation of flexure and the state of stress in the oceanic lithosphere. J. Geophys. Res. 85, 6369–6376 (1980)

    Article  ADS  Google Scholar 

  45. Zbib H.M.: On the mechanics of large inelastic deformations:non-coaxiality, axial effects in torsion and localization. Acta Mechanica 87, 179–196 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Muhlhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhlhaus, H., Moresi, L., Gross, L. et al. The influence of non-coaxiality on shear banding in viscous-plastic materials. Granular Matter 12, 229–238 (2010). https://doi.org/10.1007/s10035-010-0176-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0176-9

Keywords

Navigation