Skip to main content

Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge

Abstract

An investigation of the behaviour and energy budget of sturzstroms has been carried out using physical, analytical and numerical modelling techniques. Sturzstroms are rock slides of very large volume and extreme run out, which display intensive fragmentation of blocks of rock due to inter-particle collisions within a collisional flow. Results from centrifugal model experiments provide strong arguments to allow the micro-mechanics and energy budget of sturzstroms to be described quantitatively by a fractal comminution model. A numerical experiment using a distinct element method (DEM) indicates rock mass and boundary conditions, which allow an alternating fragmenting and dilating dispersive regime to evolve and to sustain for long enough to replicate the spreading and run out of sturzstroms without needing to resort to peculiar mechanism. The fragmenting spreading model supported here is able to explain the run out of a fluid-absent granular flow beyond the travel distance predicted by a Coulomb frictional sliding model. This, and its strong relation to internal fragmentation, suggests that a sturzstrom constitutes a landslide category of its own. This study provides a novel framework for the understanding the physics of such sturzstroms.

This is a preview of subscription content, access via your institution.

References

  1. Cruden D.M., Varnes D.J.: Landslide types and processes. In: Turner, A.K., Schuster, R.L. (eds) Landslides—Investigation and Mitigation, Special Report 247, pp. 36–75. Transportation Research Board, National Research Council, National Academy Press, Washington DC (1996)

    Google Scholar 

  2. Carson M.A., Kirkby M.J.: Hillslope Form and Process. Cambridge University Press, Cambridge (1972)

    Google Scholar 

  3. Scheidegger A.E.: Theoretical Geomorphology. Springer, Berlin, Heidelberg, Germany (1991)

    Google Scholar 

  4. Duncan J.M.: Soil slope stability analysis. In: Turner, A.K., Schuster, R.L. (eds) Landslide—Investigation and Mitigation, pp. 337–371. Transportation Research Board, National Research Council, Washington, DC (1996)

    Google Scholar 

  5. Norrish N.I., Wyllie D.C.: Rock slope stability analysis. In: Turner, A.K., Schuster, R.L. (eds) Landslides—Investigation and Mitigation, pp. 391–428. Transportation Research Board, National Research Council, Washington, DC (1996)

    Google Scholar 

  6. Hsü K.J., Albert Heim: Observations on landslides and relevance to modern interpretations. In: Voight, B. (eds) Rockslides and Avalanches, pp. 71–93. Elsevier, Amsterdam The Netherlands (1978)

    Google Scholar 

  7. Hsü K.J.: Catastrophic debris streams (sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 86(50117), 129–140 (1975)

    Article  Google Scholar 

  8. Collins G.S., Melosh H.J.: Acoustic fluidisation and the extraordinary mobility of sturzstroms. J. Geophsy. Res. 108(B10), 2473 (2003)

    ADS  Article  Google Scholar 

  9. Eisbacher, G.H., Clague, J.J.: Destructive mass movements in high mountains: Hazard and management. Geological Survey of Canada (1984)

  10. Heim A.: Bergsturz und Menschenleben. Naturforschende Gesellschaft in Zürich, Zürich, Switzerland (1932)

    Google Scholar 

  11. Itasca: Theory and background. In: PFC-3D Version 3.1, pp. 2.19–12.22. Itasca Consulting Group, Inc., Minneapolis, Minnesota (2005)

  12. Cundall P.A.: Formulation of a three-dimensional distinct element model–part i. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abs. 25(3), 107–116 (1988)

    Article  Google Scholar 

  13. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  14. Hart R., Cundall P.A., Lemos J.: Formulation of a three-dimensional distinct element model–part ii. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abs. 25(3), 117–125 (1988)

    Article  Google Scholar 

  15. Springman S., Laue J., Boyle R., White J., Zweidler A.: The ETH Zurich geotechnical drum centrifuge. Int. J. Phys. Model. Geotech. 1(1), 59–70 (2001)

    Google Scholar 

  16. Lauth B., Sareiter J.: Wissenschaftliche Erkenntnis. Mentis Verlag, Paderborn, Germany (2005)

    Google Scholar 

  17. Rosenberg A.: Philosophy of Science. Routledge, New York (2005)

    Google Scholar 

  18. Oreskes N., Shrader-Frechette K., Belitz K.: Verification, validation, and confirmation of numerical models in the earth sciences. Science 263, 641–646 (1994)

    ADS  Article  Google Scholar 

  19. Mayne, P.W., Coop, M.R., Springman, S.M., Huang, A.-B., Zornberg, J.G.: Geomaterial behavior and testing—Comportement et essai de Geomaterial, 17th International Conference on Soil Mechanics & Geotechnical Engineering, ICSMGE, pp. 2777-2872, Alexandria, Egypt, 5–9 October, 2009

  20. Lee F.H.: The philosophy of modelling versus testing. In: Springman, S. (eds) Constitutive and Centrifuge Modelling: Two Extremes, pp. 113–131. Balkema, Centro Stefano Franscini, Monte Verità, Asona, Switzerland (2002)

    Google Scholar 

  21. Strom A.L.: Morphology and internal structure of rockslides and rock avalanches: Grounds and constraints for their modelling. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure, pp. 305–326. Springer, The Netherlands (2006)

    Chapter  Google Scholar 

  22. Scheidegger A.E.: On the prediction of the reach and velocity of catastrophic landslides. Rock Mech. 5, 231–236 (1973)

    Article  Google Scholar 

  23. Davies T.R.H.: Spreading of rock avalanche debris by mechanical fluidization. Rock Mech. 15, 9–24 (1982)

    Article  Google Scholar 

  24. Legros F.: The mobility of long-runout landslides. Eng. Geol. 63(3–4), 301–331 (2002)

    Article  Google Scholar 

  25. Davies T.R.H., McSaveney M.J.: Runout of dry granular avalanches. Can. Geotech. J. 36, 313–320 (1999)

    Article  Google Scholar 

  26. Di Luzio E., Bianchi-Fasani G., Esposito C., Saroli M., Cavinato G.P., Scarascia-Mugnozza G.: Massive rock slope failure in the central Apennines (Italy): The case of the Campo di Giove rock avalanche. Bull. Eng. Geol. Environ. 63, 1–12 (2004)

    Article  Google Scholar 

  27. Strom A.L.: Mechanisms of stratification and abnormal crushing of rockslide deposits. In: Oliveira, R. (eds) 7th International Association for Engineering Geology and the Environment (IAEG) Congress, pp. 1287–1295. Balkema, Lisbon, Portugal (1994)

    Google Scholar 

  28. Strom A.L.: Some morphological types of long-runout rockslides: Effect of the relief on their mechanism and on the rockslide deposits distribution. In: Senneset, K. (eds) 7th International Symposium on Landslides, pp. 1977–1982. Balkema, Trondheim (1996)

    Google Scholar 

  29. Friedmann S.J., Taberlet N., Losert W.: Rock-avalanche dynamics: Insights from granular physics experiments. Int. J. Earth Sci. 95(5), 911–919 (2006)

    Article  Google Scholar 

  30. Smith G.M., Davies T.R., McSaveney M.J., Bell D.H.: The Acheron rock avalanche, Canterbury, New Zealand—morphology and dynamics. Landslides 3, 62–72 (2006)

    Article  Google Scholar 

  31. Pollet N., Schneider J.-L.M.: Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps). Earth Planet. Sci. Lett. 221(1–4), 433–448 (2004)

    ADS  Article  Google Scholar 

  32. Schneider J.-L.M., Wassmer P., Ledésert B.: The fabric of the sturzstrom of Flims (Swiss Alps): Characteristics and implications on the transport mechanisms. C. R. Acad. Sci. Ser. IIA. Earth Planet. Sci. 328(9), 607–613 (1999)

    Google Scholar 

  33. Couture R., Locat J., Drapeau J.-P., Evans S.G., Hadjigeorgiou J.: Evaluation de la granulométrie à la surface des débris d’avalanche rocheuse. In: Moore, D., Hungr, O. (eds) 8th International Congress International Association for Engineering Geology and the Environment, pp. 1383–1390. Balkema, Vancouver, Canada (1998)

    Google Scholar 

  34. Shoaei Z., Ghayoumian J.: Seimareh landslide, the largest complex slide in the world. In: Moore, D., Hungr, O. (eds) 8th International Congress International Association for Engineering Geology and the Environment, pp. 1337–1342. Balkema, Vancouver, Canada (1998)

    Google Scholar 

  35. Eppler D.B., Fink J., Fletcher R.: Rheologic properties and kinematics of emplacement of the Chaos Jumbles rockfall avalanche, Lassen Volcanic national park, California. J. Geophsy. Res. 92(B5), 3623–3633 (1987)

    ADS  Article  Google Scholar 

  36. Erismann T.H., Abele G.: Dynamics of Rockslides and Rockfalls. Springer, Berlin, Heidelberg, Germany (2001)

    Google Scholar 

  37. Harp E.L., Jibson R.W., Kayen R.E., Keefer D.K., Sherrod B.L., Carver G.A., Collins B.D., Moss R.E.S., Sitar N.: Landslides and liquefaction triggered by the m 7.9 Denali fault earthquake of 3 November 2002. GSA Today 13(8), 4–10 (2003)

    Article  Google Scholar 

  38. McSaveney M.J.: Sherman glacier rock avalanche, Alaska, U.S.A. In: Voight, B (eds) Rockslides and Avalanches, 1, Natural Phenomena, pp. 439–479. Elsevier, The Netherlands (1978)

    Google Scholar 

  39. Legros F.: Landslide mobility and the role of water. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure, pp. 233–242. Springer, The Netherlands (2006)

    Chapter  Google Scholar 

  40. Shaller P.J., Smith-Shaller A.: Review of proposed mechanisms for sturzstroms (long-runout landslides). In: Abbott, P.L., Seymour, D.C. (eds) Sturzstroms and Detachment Faults, Anza-Borrego Desert State Park, California, pp. 185–202. South Coast Geol. Soc. Inc., Santa Ana, CA (1996)

    Google Scholar 

  41. Deganutti, A.M.: The hypermobility of rock avalanches. Ph.D.-Thesis, Università Degli Studi di Padova, Padova/Italy (2008)

  42. Pirulli, M., Scavia, C.: An overview of numerical models for rock avalanche runout analysis. In: Ribeiro e Sousa, L., Olalla, C., Grossmann, N. (eds.) 11th Congress of the International Society for Rock Mechanics (ISRM), pp. on CD. Taylor & Francis Group, Lisbon (2007)

  43. Campbell C.S., Cleary P.W., Hopkins M.: Large-scale landslide simulations: Global deformation, velocities and basal friction. J. Geophsy. Res. 100(B5), 8267–8283 (1995)

    ADS  Article  Google Scholar 

  44. Bagnold R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. Royal Soc. London 255, 49–63 (1954)

    ADS  Google Scholar 

  45. Campbell C.S.: Self-lubrication for long runout landslides. J. Geol. 97(6), 653–665 (1989)

    ADS  Article  Google Scholar 

  46. Davies T.R.H., McSaveney M.J., Hodgson K.A.: A fragmentation-spreading model for long-runout rock avalanches. Canad. Geotech. J. 36, 1096–1110 (1999)

    Article  Google Scholar 

  47. McSaveney M.J., Davies T.R.H.: Rapid rock-mass flow with dynamic fragmentation: Inferences from the morphology, and internal structures of rockslides and avalanches. In: Evans, S.G., Martino, S. (eds) Massive Rock Slope Failure: New Models for Hazard Assessment, pp. 89–92. NATO Advanced Research Workshop, Celano (AQ), Abruzzo, Italy (2002)

    Google Scholar 

  48. Davies T.R.H., McSaveney M.J.: The role of rock fragmentation in the motion of large landslides. Eng. Geol. 109(1–2), 67–79 (2009)

    Article  Google Scholar 

  49. Davies, T.R.H., McSaveney, M.J., Deganutti, A.M.: Dynamic fragmentation causes low rock-on-rock friction. In: 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, Canada (2007)

  50. McSaveney M.J., Davies T.R.H.: Surface energy is not one of the energy losses in rock comminution. Eng. Geol. 109(1–2), 109–113 (2009)

    Article  Google Scholar 

  51. Berner C.: (2004) Der Bergsturz von Goldau. MSc Thesis, ETH Zürich, Zurich, Switzerland

  52. Zehnder J.N.: Der Goldauer Bergsturz. Verlag Stiftung Bergsturzmuseum Goldau, Goldau, Switzerland (1988)

    Google Scholar 

  53. Buxtorf, A., Baumberger, E., Niethammer, G., Arbenz, P.: Erläuterungen zur geologischen Karte der Rigihochfluhkette. In: Geologische Karte der Schweiz: Geologische Kommission der Schweizer. Naturforschenden Gesellschaft (1916)

  54. Erismann T.H.: Mechanisms of large landslides. Rock Mech. 12, 15–46 (1979)

    Article  Google Scholar 

  55. Zay K.: Goldau und seine Gegend: Wie sie war und was sie geworden. Orell, Füssli und Compagnie, Zurich/Switzerland (1807)

    Google Scholar 

  56. Thuro K., Berner C., Eberhardt E.: Der Bergsturz von Goldau 1806—200 Jahre nach dem Ereignis. Felsbau 24(3), 59–66 (2006)

    Google Scholar 

  57. Poschinger A.v.: The Flims rockslide; new aspects of its mechanism and impact. In: Evans, S.G., Martino, S. (eds) Massive Rock Slope Failure: New Models for Hazard Assessment, pp. 114–116. NATO Advanced Research Workshop, Celano (AQ), Abruzzo, Italy (2002)

    Google Scholar 

  58. Poschinger A.v., Wassmer P., Maisch M.: The Flims rockslide: History of interpretation and new insights. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure, pp. 329–356. Springer, The Netherlands (2006)

    Chapter  Google Scholar 

  59. Wassmer P., Schneider J.L., Poller N.: The “playing cards” model as a tool to better understanding long run-out: The case of the Flims Holocene sturzstrom. In: Evans, S.G., Martino, S. (eds) Massive Rock Slope Failure: New Models for Hazard Assessment, pp. 152–155. NATO Advanced Research Workshop, Celano (AQ), Abruzzo, Italy (2002)

    Google Scholar 

  60. Wassmer, P., Schneider, J.L., Pollet, N., Schmitter-Voirin, C.: Effects of the internal structure of a rock–avalanche dam on the drainage mechanism of its impoundment, Flims sturzstrom and Ilanz paleo-lake, Swiss Alps. In Geomorphology, pp. 3–17: Elsevier (2004)

  61. Montandon F.: Chronologie des grands éboulements alpins, du début de l’ére chrétienne a nos jours. Matériaux pour l’étude des calamités, Société de Géographie, Genève 32, 271–340 (1933)

    Google Scholar 

  62. Brückl E., Brückl J., Heuberger H.: Present structure and prefailure topography of the giant rockslide of Köfels. Z. Gletscherkunde Glaziogeologie 37(1), 49–79 (2001)

    Google Scholar 

  63. Erismann T., Heuberger H., Preuss E.: Der Bimsstein von Köfels (Tirol), ein Bergsturz-“Friktionit”. Mineral. Petrol. 24(1), 67–119 (1977)

    Google Scholar 

  64. Stini J.: Unsere Täler wachsen zu. Geologie Bauwes. 13, 71–79 (1941)

    Google Scholar 

  65. Ashby M.F., Jones D.R.H.: Engineering Materials. Pergamon Press, Oxford, England (1980)

    Google Scholar 

  66. Harder N.A.: Brittleness, fracture energy and size effect in theory and reality. Mater. Struct. 25, 102–106 (1992)

    Article  Google Scholar 

  67. Engelder T., Fischer M.P.: Loading configurations and driving mechanisms for joints based on the Griffith energy-balance concept. Tectonophysics 256(1–4), 253–277 (1996)

    ADS  Article  Google Scholar 

  68. van Vliet M.R.A., van Mier J.G.M.: Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Eng. Fract. Mech. 65, 165–188 (2000)

    Article  Google Scholar 

  69. van Mier J.G.M., van Vliet M.R.A.: Uniaxial tension test for the determination of fracture parameters of concrete: State of the art. Eng. Fract. Mech. 69, 235–247 (2002)

    Article  Google Scholar 

  70. Hillerborg A.: Results of three comparative test series for determining the fracture energy GF of concrete. Mater. Struct. 18(5), 407–413 (1985)

    Article  Google Scholar 

  71. Schubert H.: Aufbereitung Fester Mineralischer Rohstoffe. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, Germany (1989)

    Google Scholar 

  72. Imre, B., Wildhaber, B., Springman, S.M.: A physical analogue material to simulate sturzstroms. Eng. Geol. In revision (2009)

  73. Räbsamen, S.: Die Energiebilanz von Rutschungen aus trockenem, nicht fragmentierendem Reibungsmaterial in der geotechnischen Trommelzentrifuge am Institut für Geotechnik an der ETH in Zürich. MSc Thesis, ETH, Zurich, Switzerland (2007)

  74. McDowell G.R.: Statistics of soil particle strength. Géotechnique 51(10), 897–900 (2001)

    Google Scholar 

  75. McDowell G.R., Bolton M.D.: On the micromechanics of crushable aggregates. Géotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  76. McDowell G.R., Harireche O.: Discrete element modelling of soil particle fracture. Géotechnique 52(2), 131–135 (2002)

    Google Scholar 

  77. Sammis C., King G., Biegel R.: The kinematics of gouge deformation. Pure Appl. Geophys. 125(5), 777–812 (1987)

    ADS  Article  Google Scholar 

  78. McDowell G.R., Daniell C.M.: Fractal compression of soil. Géotechnique 51(2), 173–176 (2001)

    Google Scholar 

  79. Einav I.: Breakage mechanics—part i: Theory. J. Mech. Phys. Solids 55(6), 1274–1297 (2007)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  80. Mandelbrot B.B.: The Fractal Geometry of Nature. W.H. Freeman, San Francisco/CA (1982)

    MATH  Google Scholar 

  81. Turcotte D.L.: Fractals and fragmentation. J. Geophs. Res. 91(B2), 1921–1926 (1986)

    ADS  Article  Google Scholar 

  82. Tyler S.W., Wheatcraft S.W.: Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 56(2), 362–369 (1992)

    Article  Google Scholar 

  83. Diaz-Zorita M., Grove J.H., Perfect E.: Sieving duration and sieve loading impacts on dry soil fragment size distributions. Soil Tillage Res. 94, 15–20 (2007)

    Article  Google Scholar 

  84. Crosta G.B., Frattini P., Fusi N.: Fragmentation in the Val Pola rock avalanche, Italian Alps. J. Geophsy. Res. 112(F01006), 1–23 (2007)

    Google Scholar 

  85. Steacy S.J., Sammis C.G.: An automaton for fractal patterns of fragmentation. Nature 353(6341), 250–252 (1991)

    ADS  Article  Google Scholar 

  86. McSaveney M., Davies T.R.H.: Rockslides and their motion. In: Sassa, K., Fukuoka, H., Wang, F., Wang, G. (eds) Progress in Landslide Science, pp. 113–133. Springer, Berlin Heidelberg (2007)

    Chapter  Google Scholar 

  87. Davies T.R.H., McSaveney M.J.: Inferences from the morphology and internal structure of rockslides and rock avalanches rapid rock mass flow with dynamic fragmentation. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure, pp. 285–304. Springer, The Netherlands (2006)

    Google Scholar 

  88. Grady D.E., Kipp M.E.: Dynamic rock fragmentation. In: Atkinson, B.K. (eds) Fracture Mechanics of Rock, pp. 429–475. Academic Press, London (1987)

    Google Scholar 

  89. Herget G.: Stresses in Rock. Balkema, Rotterdam, The Netherlands (1988)

    Google Scholar 

  90. Vardoulakis I.: Rock bursting as a surface instability phenomenon. Int. J. Rock Mech. Mining Sci. Geomech. Abs. 21(3), 137–144 (1984)

    Article  Google Scholar 

  91. Terzaghi K.: From Theory to Practice in Soil Mechanics. Wiley, New York (1960)

    Google Scholar 

  92. Jaeger J.C., Cook N.G.W.: Fundamentals of Rock Mechanics. Chapman and Hall, Great Britain (1979)

    Google Scholar 

  93. Imre B., Räbsamen S., Springman S.M.: A coefficient of restitution of rock materials. Comp. Geosci. 34, 339–350 (2008)

    Article  Google Scholar 

  94. Howe S., Goldsmith W., Sackman J.: Macroscopic static and dynamic mechanical properties of yule marble. Exp. Mech. 14(9), 337–346 (1974)

    Article  Google Scholar 

  95. Zhao J.: Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int. J. Rock Mech. Mining Sci. 37(7), 1115–1121 (2000)

    Article  Google Scholar 

  96. Li X.B., Lok T.S., Zhao J.: Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech. 38(1), 21–39 (2005)

    Article  Google Scholar 

  97. Locat P., Couture R., Leroueil S., Locat J., Jaboyedoff M.: Fragmentation energy in rock avalanches. Canad. Geotech. J. 43(8), 830–851 (2006)

    Article  Google Scholar 

  98. van Vliet, M.R.A.: Size effect in tensile fracture of concrete and rock. PhD Thesis, Technical University Delft, Delft, The Netherlands (2000)

  99. Turcotte D.L.: Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge, UK (1997)

    Google Scholar 

  100. Pollack H.N.: Uncertain Science...Uncertain World. Cambridge University Press, Cambridge, UK (2003)

    Book  Google Scholar 

  101. Imre B.: The particle flow code, PFC-2D, applied in planetary studies to model the tectonic evolution of chasma walls on Mars. In: Shimizu, Y., Hart, R.D., Cundall, P.A. (eds) 2nd International PFC Symposium: Numerical Modeling in Micromechanics via Particle Methods, pp. 199–206. Balkema, Kyoto, Japan (2004)

    Google Scholar 

  102. Potyondy D.O., Cundall P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Mining Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  103. Atkinson J.H., Bransby P.L.: The Mechanics of Soils : An Introduction to Critical State Soil Mechanics. McGraw-Hill, London [etc.] (1978)

    Google Scholar 

  104. Hewitt K.: Rock avalanches with complex run out and emplacement, Karakoram Himalaya, Inner Asia. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure, pp. 521–550. Springer, The Netherlands (2006)

    Chapter  Google Scholar 

  105. Abele G.: Bergstürze in den Alpen. Deutscher und Österreichischer Alpenverein, München (1974)

    Google Scholar 

  106. Prager C., Krainer K., Seidl V., Chwatal W.: Spatial features of holocene sturzstrom-deposits inferred from subsurface investigations (Fernpass rockslide, Tyrol, Austria). Geo. Alp 3, 147–166 (2006)

    Google Scholar 

  107. Reitner J., Lang M., van Husen D.: Deformation of high slopes in different rocks after Würmian deglaciation in the Gailtal (Austria). Quater. Int. 18, 43–51 (1993)

    Article  Google Scholar 

  108. Lucchitta B.K., McEwen A.S., Clow G.D., Geissler P.E., Singer R.B., Schultz R.A., Squyres S.W.: The canyon system on Mars. In: Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S. (eds) Mars, pp. 453–492. University of Arizona Press, Tucson & London (1992)

    Google Scholar 

  109. Caruso P.A., Schultz R.A.: Slope stability and lithology for interior layered deposits and wallrock in Valles Marineris. Lunar Planet. Sci. 32, 1745 (2001)

    ADS  Google Scholar 

  110. Schultz, R.A.: Stability of rock slopes in Valles Marineris, Mars. Geophys. Res. Lett. 29, 19, 1932, 38-31—38-34 (2002)

  111. Melosh H.J.: Giant rock avalanches. Nature 3348, 483–484 (1990)

    ADS  Article  Google Scholar 

  112. ISRM: International society for rock mechanics commission on standardization of laboratory and field tests: Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Mining Sci. Geomech. Abs. 15, 6, 319-368 (1978)

  113. Imre B., Alig C., Schönenberger I., Springman S.M., Hermann S.: Morphology and kinematic of a very large, deep-seated structural rock slide located in the Fusch valley, Eastern Alps, Austria. Geomorphology 112(3–4), 277–294 (2009)

    ADS  Article  Google Scholar 

  114. Voight B., Pariseau W.G.: Rockslides and avalanches: An introduction. In: Voight, B. (eds) Rockslides and Avalanches, 1, Natural Phenomena, pp. 1–63. Elsevier, The Netherlands (1978)

    Google Scholar 

  115. Shreve R.L.: Sherman landslide, Alaska. Science 154(3757), 1639–1643 (1966)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Imre.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Imre, B., Laue, J. & Springman, S.M. Fractal fragmentation of rocks within sturzstroms: insight derived from physical experiments within the ETH geotechnical drum centrifuge. Granular Matter 12, 267–285 (2010). https://doi.org/10.1007/s10035-009-0163-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0163-1

Keywords

  • Centrifuge modelling
  • Distinct element modelling
  • Fractal fragmentation
  • Rock avalanche
  • Rock mechanics
  • Sturzstrom