Skip to main content
Log in

Influence of relative density on granular materials behavior: DEM simulations of triaxial tests

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The rheological behavior of non-cohesive soils results from the arrangement and complex geometry of the grains. Numerical models based on discrete element modeling provides an opportunity to understand these phenomena while considering the discrete elements with a similar shape to that of the grains the soil is composed of. However, dealing with realistic shapes would lead to a prohibitive calculation cost. In a macroscopic modeling approach, simplification of the discrete elements’ shape can be done as long as the model can predict experimental results. Since the intrinsic non-convex geometry property of real grains seems to play a major role on the response of the granular medium, it is thus possible to keep this geometrical feature by using cluster of spherical discrete elements, which has the advantage to reduce dramatically the computation cost. Since the porosities found experimentally could not always be obtained with the numerical model—owing to the huge difference in shape, the notion of relative density, which requires a search for minimum and maximum porosities for the model, was chosen to compare the experimental and numerical results. Comparing the numerical simulations with the experimental triaxial tests conducted with relative densities and different confining pressures shows that the model is able to predict the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chien L.-K., Oh Y.-N., Chang C.-H.: Effects of fines content on liquefaction strength and dynamic settlement of reclaimed soil. Can. Geotech. J. 39, 254–265 (2002)

    Article  Google Scholar 

  2. Chang M.-F., Yu G., Na Y.-M., Choa V.: Evaluation of relative density profiles of sand fill at a reclaimed site. Can. Geotech. J. 43, 903–914 (2006)

    Article  Google Scholar 

  3. Yoon Y.W., Cheon S.H., Kang D.S.: Bearing capacity and settlement of tire-reinforced sands. Geotext. Geomembr. 22, 439–453 (2004)

    Article  Google Scholar 

  4. Brandl, H., Blovsky, S.: Protective barriers against rockfall. In: Floss, R., Bräu, G. (eds.) Geotechnical Engineering with Geosynthetics, Eurogeo 3, Munich, Germany, 01–03 March 2004, pp. 95–100 (2004)

  5. Cundall P.A., Strack O.D.L.: A discrete numerical modelling method for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  6. Le Hello, B., Villard, P., Nancey, A., Delmas, P.: Coupling finite elements and discrete elements methods, application to reinforced embankment by piles and geosynthetics. In: Schweiger, H.F. (ed.) Numerical Methods in Geotechnical Engineering, 6th European Conference, Graz, Austria, 06–08 September 2006, pp. 843–848 (2006)

  7. Gotteland, P., Lambert, S., Salot, C., Gras, V.: Investigating the strength characteristics of tyre chips–sand mixtures for geo-cellular structure engineering. In: International Workshop on Scrap Tyre Derived Geomaterials—Opportunities and Challenges, Yokosuka, Japan, 23–24 March 2007, for publication (2007)

  8. Achmus, M., Abdel-Rahman, K.: The influence of “up-scaling” on the results of particle method calculations of non-cohesive soils. In: Konietzky, H. (ed.) Numerical Modeling in Micromechanics via Particle Methods, Proceedings of the First International PFC Symposium, Gelsenkirchen, Germany, 6/7 November 2002, pp. 183–187 (2003)

  9. Matsushima, T., Saomoto, H.: Discrete element modeling for irregularly-shaped sand grains. In: Proceedings of NUMGE2002: Numerical Methods in Geotechnical Engineering, Paris, France, 4–6 September 2002, pp. 239–246. Presses de l’ENPC, Paris (2002). ISBN2-85978-362-8

  10. Ting J.M., Khwaja M., Meachum L.R., Rowell J.D.: An ellipse-based discrete element model for granular materials. Int. J. Numer. Anal. Methods Geomech. 17, 603–623 (1993)

    Article  MATH  Google Scholar 

  11. Ng T.T.: Numerical simulations of granular soil using elliptical particles. Comput. Geotech. 16, 153–169 (1994)

    Article  Google Scholar 

  12. Ting J.M., Meachum L.R., Rowell J.D.: Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Eng. Comput. 12, 99–108 (1995)

    Article  Google Scholar 

  13. Ouadfel H., Rothenburg L.: An algorithm for detecting inter-ellipsoid contacts. Comput. Geotech. 24(4), 245–263 (1999)

    Article  Google Scholar 

  14. Rothenburg L., Kruyt N.P.: Critical state and evolution of coordination number in simulated granular materials. Int. J. Solids Struct. 41, 5763–5774 (2004)

    Article  MATH  Google Scholar 

  15. Mirghasemi A.A., Rothenburg L., Matyas E.L.: Numerical simulations of assemblies of two-dimensional polygon-shaped particles. Soils Found. 37(3), 43–52 (1995)

    Google Scholar 

  16. Matuttis H.G., Luding H.G., Hermann H.J.: Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109, 278–292 (2000)

    Article  Google Scholar 

  17. Alonso-Marroquin F., Hermann H.J.: Calculation of the incremental stress–strain relation of a polygonal packing. Phys. Rev. E 66, 022130 (2002)

    Article  Google Scholar 

  18. Nouguier-Lehon C., Cambou B., Vincens E.: Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Meth. Geomech. 27(14), 1207–1226 (2003)

    Article  MATH  Google Scholar 

  19. Nouguier-Lehon C., Vincens E., Cambou B.: Structural changes in granular materials: the case of irregular polygonal particles. Int. J. Solids Struct. 42, 6356–6375 (2005)

    Article  MATH  Google Scholar 

  20. Alonso-Marroquin F., Luding S., Hermann H.J., Vardoulalis I.: Role of anisotropic in the elastoplastic response of a polygonal packing. Phys. Rev. E 71(5), 051304 (2005)

    Article  ADS  Google Scholar 

  21. Azema E., Radjai F., Peyroux R., Saussine G.: Force transmission in a packing of pentagonal particles. Phys. Rev. E 76(1), 011301 (2007)

    Article  ADS  Google Scholar 

  22. Williams J.R., Pentland A.P.: Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9, 115–127 (1992)

    Article  Google Scholar 

  23. Mustoe G.G.W., Miyata M.: Material flow analyses of non-circular shaped granular media using DEM. J. Eng. Mech. 127(10), 1017–1026 (2001)

    Article  Google Scholar 

  24. Potapov A.V., Campbell C.S.: A fast model for the simulation of non-round particles. Granul. Matter 1, 9–14 (1998)

    Article  MATH  Google Scholar 

  25. Emeriault, F.: Anisotropic elasticity of granular assemblies with ellipsoidal elements. In: Mechanics of Deformation and Flow of Particulate Materials, ASCE. Evanston, Illinois, pp. 47–61 (1997)

  26. Ashmawy A.H., Sukumaran B., Hoang V.V.: Evaluating the influence of particle shape on liquefaction behaviour using discrete element modelling. In: Proceedings of the 13th International Offshore and Polar Engineering Conference (ISOPE, Honolulu), vol. 2, pp. 542–549 (2003)

  27. Sallam, A.M.: Studies on modeling angular soil particles using the discrete element method. Thèse: Philosophie: University of South Florida, 228p (2004)

  28. Emeriault F., Claquin C.: Statistical homogenization for assemblies of elliptical grains: effect of the aspect ratio and particle rotation. Int. J. Solids Struct. 41, 5837–5849 (2004)

    Article  MATH  Google Scholar 

  29. Li, L., Holt, R.M.: Approaching real grain shape in the simulation of sandstone using DEM. In: Garcia-Rojo, R. et al. (eds.) Powders and Grains, Proceedings of the 5th International Conference on Micromechanics of Granular Media, Stuttgart, Germany, 18–22 July 2005, pp. 1369–1373 (2005)

  30. Lin X., Ng T.T.: A three dimensional discrete element model using arrays of ellipsoids. Geotechnique 47(2), 319–329 (1997)

    Google Scholar 

  31. Ng T.T.: Fabric evolution of ellipsoidal arrays with different particle shapes. J. Eng. Mech. 127(10), 994–999 (2001)

    Article  Google Scholar 

  32. Kuhn M.R., Bagi K.: Contact rolling and deformation in granular media. Int. J. Solids Struct. 41(21), 5793–5820 (2004)

    Article  MATH  Google Scholar 

  33. Ng T.T., Petrakis E.: Triaxial test simulations with discrete element method and hydrostatic boundaries. J. Eng. Mech. 130(10), 1188–1194 (2004)

    Article  Google Scholar 

  34. Cundall, P.A.: Formulation of a three-dimensionnal distinct element model-part I: a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. (1988) (Abstract)

  35. Saussine, G., Moreau, J.J., Dubois, F., Cholet, C., Bohatier, C., Gautier, P.E.: Modeling ballast behavior using a three-dimensional polyhedral discrete element method. In: XXI International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, August 15–21 (2004)

  36. Zhao D., Nezami E.G., Hashash M.A., Ghaboussi J.: Three-dimensional discrete element simulation for granular materials. Eng. Comput. 23(7), 749–770 (2006)

    Article  Google Scholar 

  37. Lu M., McDowell G.R.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9, 69–80 (2007)

    Article  Google Scholar 

  38. Jensen R.P., Bosscher P.J., Plesha M.E., Edil T.B.: DEM simulations of granular media—structure interface: effects of surface roughness and particle shape. Int. J. Numer. Anal. Meth. Geomech. 23, 531–547 (1999)

    Article  MATH  Google Scholar 

  39. Jensen R.P., Edil T.B., Bosscher P.J., Plesha M.E., Kahla N.B.: Effect of particle shape on interface behavior of DEM simulated granular materials. Int. J. Geomech. 1(1), 1–19 (2001)

    Article  Google Scholar 

  40. Katzenbach, R., Schmitt, A.: Micromechanical modeling of granular materials under triaxial and oedometric loading. In: Shimizu, Y. et al. (eds.) Numerical Modeling in Micromechanics via Particle Methods, Proceedings of the 2nd International PFC Symposium, Kyoto, Japan, October 2004, pp. 313–322 (2004)

  41. O’sullivan, C., Bray, J.D.: The importance of accurately capturing particle geometry in DEM simulations. In: Garcia-Rojo, R. et al. (eds.) Powders and grains, Proceedings of the 5th International Conference on Micromechanics of Granular Media, Stuttgart, Germany, 18–22 July 2005, pp. 1333–1337 (2005)

  42. Bertrand D., Gotteland P., Lambert S., Nicot F., Derache F.: Multi-scale modelling of cellular geo-composite structure under localized impact. Revue Européenne de Genie Civil 10(3), 309–322 (2006)

    Article  Google Scholar 

  43. Matsushima, T.: Effect of irregular grain shape on quasi-static shear behavior of granular assembly. In: Garcia-Rojo, R. et al. (eds.) Powders and Grains, Proceedings of the 5th International Conference on Micromechanics of Granular Media, Stuttgart, Germany, 18–22 July 2005, pp. 1319–1323 (2005)

  44. Calvetti, F., Viggiani, G., Tamagnini, C.: Micromechanical inspection of constitutive modelling. In: Viggiani, G. (ed.) Constitutive Modelling and Analysis of Boundary Value Problems in Geotechnical Engineering, Napoli, Italy, 22–24 April 2003, pp. 187–216 (2003)

  45. Iwashita K., Oda M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)

    Article  Google Scholar 

  46. Donze F., Magnier S.A.: Formulation of a three-dimensional numerical model of brittle behavior. Geophys. J. Int. 122, 790–802 (1995)

    Article  ADS  Google Scholar 

  47. Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7, 31–43 (2005)

    Article  MATH  Google Scholar 

  48. Combe, G.: Mécanique des Matériaux Granulaires et Origines Microscopiques de la Déformation. LCPC, Paris (2002)

  49. Mahboubi A., Ghaouti A., Cambou B.: La simulation numérique discrète du comportement des matériaux granulaires. Revue Française de Géotechnique 76, 45–61 (1996)

    Google Scholar 

  50. Kruyt, N.P., Rothenburg, L.: Strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. In: Garcia-Rojo, R. et al. (eds.) Powders and Grains, Proceedings of the 5th International Conference on Micromechanics of Granular Media, Stuttgart, Germany, 18–22 July 2005, pp. 251–255 (2005)

  51. Chareyre, B., Villard, P.: Discrete element modeling of curved geosynthetic anchorages with known macro-properties. In: Konietzky, H. (ed.) Numerical Modeling in Micromechanics via Particle Methods, Proceedings of the First International PFC Symposium, Gelsenkirchen, Germany, 6/7 November 2002, pp. 197–203 (2003)

  52. Deluzarche, R., Cambou, B., Fry, J.J.: Modeling of rockfill behaviour with crushable particles. In: Konietzky, H. (ed.) Numerical Modeling in Micromechanics via Particle Methods, Proceedings of the First International PFC Symposium, Gelsenkirchen, Germany, 6/7 November 2002, pp. 219–224 (2003)

  53. Cola S., Simonini P.: Mechanical behavior of silty soils of the Venice lagoon as a function of their grading characteristics. Can. Geotech. J. 39, 879–893 (2002)

    Article  Google Scholar 

  54. Samieh A.M., Wong R.C.K.: Modelling the responses of Athabasca oil sand in triaxial compression tests at low pressure. Can. Geotech. J. 35, 395–406 (1998)

    Article  Google Scholar 

  55. Lancelot L., Shahrour I., Al Mahmoud M.: Failure and dilatancy properties of sand at relatively low stresses. J. Eng. Mech. 132(12), 1396–1399 (2006)

    Article  Google Scholar 

  56. Collop A.C., McDowell G.R., Lee Y.W.: Modelling dilation in an idealised asphalt mixture using discrete element modelling. Granul. Matter 8, 175–184 (2006)

    Article  Google Scholar 

  57. Roux, J.-N.: The nature of quasistatic deformation in granular materials. In: Garcia-Rojo, R. et al. (eds.) Powders and Grains, Proceedings of the 5th International Conference on Micromechanics of Granular Media, Stuttgart, Germany, 18–22 July 2005, pp. 261–265 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Gotteland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salot, C., Gotteland, P. & Villard, P. Influence of relative density on granular materials behavior: DEM simulations of triaxial tests. Granular Matter 11, 221–236 (2009). https://doi.org/10.1007/s10035-009-0138-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0138-2

Keywords

Navigation