Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding

Abstract

We experimentally investigated 3D biparticulate systems that segregate solely due to density differences in the 3D horizontal rotating drum geometry and compare these to systems which segregate due to size differences. Radial segregation was observed in all systems studied after a few drum rotations. Size induced axial segregation (banding) was observed, as expected. However, contrary to what has sometimes been reported, we found that density differences alone did not induce axial segregation for density ratios up to 4.9.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Khakhar D.V., McCarthy J.J., Ottino J.M.: Radial segregation of granular materials in a rotating cylinder. Phys. Fluids 9(12), 1 (1997)

    Article  ADS  Google Scholar 

  2. 2

    Ristow G.H.: Particle mass segregation in a two-dimensional rotating drum. Europhys. Lett. 28, 97 (1994)

    Article  ADS  Google Scholar 

  3. 3

    Clement E., Rajchenbach J., Duran J.: Mixing of a granular material in a bidimensional rotating drum. Europhys. Lett. 30, 7 (1995)

    Article  Google Scholar 

  4. 4

    Bideau D., Cantelaube F.: Radial segregation in a 2d drum: an experimental analysis. Europhys. Lett. 30, 133 (1995)

    Article  Google Scholar 

  5. 5

    Jain N., Ottino J.M., Lueptow R.M.: Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granular Matter 7, 69 (2005)

    Article  Google Scholar 

  6. 6

    Oyama Y.: Studies on mixing of solids. Mixing of binary system of two sizes by ball mill motion. 179th Report Okochi Res Lab I.P.C.R. 37(951), 17 (1939)

    Google Scholar 

  7. 7

    Donald M.B., Roseman B.: Mixing and de-mixing of solid particles, part 1: Mechanisms in a horizontal drum mixer. Br. Chem. Eng. 7, 749 (1962)

    Google Scholar 

  8. 8

    Roseman B., Donald M.B.: Mixing and de-mixing of solid particles, part 2: Effects of varying the operating conditions of a horizontal drum mixer. Br. Chem. Eng. 7, 922 (1962)

    Google Scholar 

  9. 9

    Zik O., Levine D., Lipson S.G., Shtrikman S., Stavans J.: Rotationally induced segregation of granular materials. Phys. Rev. Lett. 73, 644 (1994)

    Article  ADS  Google Scholar 

  10. 10

    Hill K.M., Caprihan A., Kakalios J.: Bulk segregation in rotated granular material measured by magnetic resonance imaging. Phys. Rev. Lett. 78(1), 50 (1997)

    Article  ADS  Google Scholar 

  11. 11

    Hill, K.M., Kakalios, J., Yamane, K., Tsuji, Y., Caprihan, A.: Dynamic angle of repose as a function of mixture concentration: results from MRI experiments and DEM simulations. In: Behringer, R.P., Jenkins, J.T. (eds.) Powders and Grains, vol. 97, p. 463. A.A.Balkema, Rotterdam (1997)

  12. 12

    Newey M., Ozik J., van der Meer S.M., Ott E., Losert W.: Band-in-band segregation of multidisperse granular mixtures. Europhys. Lett. 66(2), 205 (2004)

    Article  ADS  Google Scholar 

  13. 13

    Kuo H.P., Hsu R.C., Hsiao Y.C.: Investigation of axial segregation in a rotating drum. Powder Tech. 153, 196 (2005)

    Article  Google Scholar 

  14. 14

    Charles C.R.J., Khan Z.S., Morris S.W.: Pattern scaling in axial segregation. Granular Matter 8, 1 (2006)

    Article  Google Scholar 

  15. 15

    Taberlet, N., Newey, M., Richard, P., Losert, W.: On axial segregation in a tumbler: an experimental and numerical study. J. Stat. Mech. P07013 (2006)

  16. 16

    Karolyi A., Kertesz J., Havlin S., Makse H.A., Stanley H.E.: Filling a silo with a mixture of grains: friction-induced segregation. Europhys. Lett. 44(3), 386 (1998)

    Article  ADS  Google Scholar 

  17. 17

    Rapaport D.C.: Simulational studies of axial granular segregation in a rotating cylinder. Phys. Rev. E 65, 061306 (2002)

    Article  ADS  Google Scholar 

  18. 18

    Pohlman N.A., Severson B.L., Ottino J.M., Lueptow R.M.: Suface roughness effects in granular matter: influence on angle of repose and the absence of segregation. Phys. Rev. E 73, 031304 (2006)

    Article  ADS  Google Scholar 

  19. 19

    Hill K.M., Kakalios J.: Reversible axial segregation of binary mixtures of granular materials. Phys. Rev. E 49, R3610 (1994)

    Article  ADS  Google Scholar 

  20. 20

    Meier S.W., Melani Barreiro D.A., Ottino J.M., Lueptow R.M.: Coarsening of granular segregation patterns in quasi-two-dimensional tumblers. Nat. Phys. 4, 244–248 (2008)

    Article  Google Scholar 

  21. 21

    Alexander A., Muzzio F.J., Shinbrot T.: Effects of scale and inertia on granular banding segregation. Granular Matter 5, 171 (2004)

    Article  Google Scholar 

  22. 22

    Maneval J.E., Hill K.M., Smith B.E., Caprihan A.: Effects of end wall friction in rotating cylinder granular flow experiments. Granular Matter 7(4), 199 (2005)

    Article  Google Scholar 

  23. 23

    Pohlman N.A., Ottino J.M., Lueptow R.M.: End-wall effects in granular tumblers: From quasi-two-dimensional flow to three-dimensional flow. Phys. Rev. E 74, 031305 (2006)

    Article  ADS  Google Scholar 

  24. 24

    Fukushima E.: Granular flow studies by NMR: a chronology. Adv. Complex Syst. 4, 1 (2001)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lori Sanfratello.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanfratello, L., Fukushima, E. Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding. Granular Matter 11, 73–78 (2009). https://doi.org/10.1007/s10035-008-0121-3

Download citation

Keywords

  • Granular segregation
  • Granular flow
  • Axial segregation
  • Density segregation