Skip to main content
Log in

Using MR elastography to image the 3D force chain structure of a quasi-static granular assembly

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We have developed a magnetic resonance elastography (MRE) technique to experimentally investigate the force chain structure within a densely packed 3D granular assembly. MRE is an MRI technique whereby small periodic displacements within an elastic material are measured. We verified our MRE technique using a gel phantom and then extended the method to image the force carrying chain structure within a 3D granular assembly of particles under an initial pre-stressed condition, on top of which is superimposed a small-amplitude vibration. We find that significant coherent displacements form along force chains, where spin phase accumulates preferentially, allowing visualization. This work represents the first time that the internal force chain structure of a dry assembly of granular solids has been fully acquired in three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Travers T., Ammi M., Bideau D., Gervois A., Messager J.C., Troadec J.P.: Uniaxial compression of 2d packings of cylinders. Effects of weak disorder. Europhys. Lett. 4, 329–332 (1987)

    Article  ADS  Google Scholar 

  2. Mueth D.M., Jaeger H.M., Nagel S.R.: Force distribution in a granular medium. Phys. Rev. E 57(3), 3164–3169 (1998)

    Article  ADS  Google Scholar 

  3. Sugano T., Miyata M., Tanaka T., Nakagawa M., Mustoe G.G.W., Kozawa D.: Experimental study on the force support system within a rubble rock foundation. In: Kishino, Y. (eds) Powders and Grains 2001, pp. 263–266. Swets and Zeitlinger, Lisse (2001)

    Google Scholar 

  4. Majmudar T.S., Behringer R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)

    Article  ADS  Google Scholar 

  5. Liu C.h., Nagel S.R., Schecter D.A., Coppersmith S.N., Majumdar S., Narayan O., Witten T.A.: Force fluctuations in bead packs. Science 269, 513–515 (1995)

    Article  ADS  Google Scholar 

  6. Coppersmith S.N., Liu C.h., Majumdar S., Narayan O., Witten T.A.: Model for force fluctuations in bead packs. Phys. Rev. E 53(5), 4673–4685 (1996)

    Article  ADS  Google Scholar 

  7. Radjai F., Jean M., Moreau J.-J., Roux S.: Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77(2), 274–277 (1996)

    Article  ADS  Google Scholar 

  8. Socolar J.E.S.: Average stresses and force fluctuations in noncohesive granular materials. Phys. Rev. E 57(3), 3204–3215 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. Miyata M., Sugano T., Tanaka T., Nakagawa M., Mustoe G.G.W., Kozawa D.: Study on the force support system within a rubble rock foundation. In: Kishino, Y. (eds) Powders and Grains 2001, pp. 267–270. Swets and Zeitlinger, Lisse (2001)

    Google Scholar 

  10. Crowin E.I., Jaeger H.M., Nagel S.R.: Structural signature of jamming in granular media. Nature 435, 1075–1078 (2005)

    Article  ADS  Google Scholar 

  11. Zhou J., Long S., Wang Q., Dinsmore A.D.: Meaurement of forces inside a three-dimensional pile of frictionless droplets. Science 312, 1631–1633 (2006)

    Article  ADS  Google Scholar 

  12. Liu C.h., Nagel S.R.: Sound and vibration in granular materials. J. Phys. Condens. Matter 6, A433–A436 (1994)

    Article  ADS  Google Scholar 

  13. Jia X., Carol C., Velicky B.: Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82(9), 1863–1866 (1999)

    Article  ADS  Google Scholar 

  14. Hostler S.R., Brennen C.E.: Pressure wave propagation in a granular bed. Phys. Rev. E 72, 031303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fukushima E.: Granular flow studies by nmr: a chronology. Adv. Complex Syst. 4(4), 503–507 (2001)

    Article  Google Scholar 

  16. Muthupillai R., Lomas D.J., Rossman P.J., Greenleaf J.F., Manduca A., Ehman R.L.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)

    Article  ADS  Google Scholar 

  17. Muthupillai R., Ehman R.L.: Magnetic resonance elastography. Nat. Med. 2(5), 601–603 (1996)

    Article  Google Scholar 

  18. Lewa C.J.: Elasto-magnetic resonance spectroscopy. Europhys. Lett. 35(1), 73–76 (1996)

    Article  ADS  Google Scholar 

  19. Blümich B.: NMR Imaging of Materials. Clarendon Press, Oxford (2000)

    Google Scholar 

  20. Venkatesh S.K., Yin M., Glockner J.F., Takahashi N., Araoz P.A., Talwalkar J.A., Ehman R.L.: MR elastography of liver tumors: preliminary results. Am. J. Roentgenol. 190, 1534–1540 (2008)

    Article  Google Scholar 

  21. Plewes D.B., Bishop J., Samani A., Sciarretta J.: Visualization and quantification of breast cancer biomechanical properties with magnetic resonance elastography. Phys. Med. Biol. 45, 1591–1610 (2000)

    Article  Google Scholar 

  22. McKnight A.L., Kugel J.L., Rossman P.J., Manduca A., Hartmann L.C., Ehman R.L.: MR elastography of breast cancer: preliminary results. Am. J. Roentgenol. 178(6), 1411–1417 (2002)

    Google Scholar 

  23. Jenkyn T.R., Ehman R.L., An K.-N.: Noninvasive muscle tension measurement using the novel technique of magnetic resonance elastography (mre). J. Biomech. 36, 1917–1921 (2003)

    Article  Google Scholar 

  24. Louge M.Y., Tuozzolo C., Lorenz A.: On binary impacts of small liquid-filled shells. Phys. Fluids 9(12), 3670–3677 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori Sanfratello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanfratello, L., Fukushima, E. & Behringer, R.P. Using MR elastography to image the 3D force chain structure of a quasi-static granular assembly. Granular Matter 11, 1–6 (2009). https://doi.org/10.1007/s10035-008-0112-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-008-0112-4

Keywords

Navigation