Skip to main content
Log in

Classical and non-classical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The penetration test is a widely used in-situ test in geotechnical engineering which mechanism is very important to geomechanics. This paper presents a numerical study on both classic and non-classic kinematic fields in penetration tests on granular ground. A two-dimensional Discrete Element Method (DEM) has been used to simulate penetration tests on a full-size granular ground that is under an amplified gravity and under a K 0 lateral stress boundary. In addition to classical kinematic variables, i.e. displacement and velocity, a non-classical kinematic variable called the average pure rotation rate (APR), which represents particle sizes and particle rotations (M. J. Jiang et al. Kinematic models for non-coaxial granular materials: Part I: theories. Int J Numer Anal Methods Geomech 2005; 29(7): 643–661), is investigated in the penetration test. The DEM numerical results show that the penetration leads to significant changes in displacement, velocity and APR fields, making the soil near the penetrometer move in complex displacement and APR paths. In comparison to velocity field, APR field is very ‘localized’ in the area close to the penetrometer shoulder during penetration. Based on the normalized tip resistance, the penetration process can be described by three phases of penetration, in which the granular ground undergoes three types of failure mechanism, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robertson P.K.: In situ testing and its application to foundation engineering. Can. Geotech. J. 23(4), 573–594 (1986)

    Google Scholar 

  2. Been K., Crooks J.H.A., Becker D.E., Jefferies M.G.: The cone penetration test in sands: II, general inference of state. Géotechnique 37(3), 285–299 (1987)

    Google Scholar 

  3. Schmertmann, J.H.: Guidelines for cone penetration test performance and design. United States Federal Highway Administration Report FHWA-TS-78-209, Washington, D.C, USA (1978)

  4. Sladen J.A.: Problems with interpretation of sand state from cone penetration test. Géotechnique 39(2), 323–332 (1989)

    Google Scholar 

  5. Terzaghi K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Google Scholar 

  6. Durgunoglu H.T., Mitchell J.K.: Static penetration resistance of soils. Proc. ASCE Spec. Conf. In-Situ Meas. Soil Properties 1, 151–189 (1975)

    Google Scholar 

  7. Vesic A.S.: Expansion of cavities in infinite soil mass. J. Soil Mech. Found. Division ASCE 98(SM3), 265–290 (1972)

    Google Scholar 

  8. Yu H.S., Houlsby G.: Finite cavity expansion in dilatant soils: loading analysis. Géotechnique 41(2), 173–183 (1991)

    Google Scholar 

  9. Salgado R., Mitchell J.K., Jamiolkowski M.: Cavity expansion and penetration resistance in sand. J. Geotech. Geoenviron. Eng. ASCE 123(4), 344–354 (1997)

    Article  Google Scholar 

  10. Baligh M.M.: Strain path method. J. Geotech. Eng. ASCE 111, 1108–1136 (1985)

    Google Scholar 

  11. Sagaseta, C., Whittle, A., Santagata, M.: Deformation analysis of shallow penetration in saturated clay. Research report R94-09. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, USA (1995)

  12. De Borst C., Vermeer P.A.: Finite element analysis of static penetration tests. Géotechnique 34(2), 199–210 (1984)

    Google Scholar 

  13. Abu-Farsakh M., Voyiadjis G., Tumay M.: Numerical analysis of the miniature piezocone penetration tests (PCPT) in cohesive soils. Int. J. Numer. Anal. Methods Geomech. 22, 791–818 (1998)

    Article  MATH  Google Scholar 

  14. Huang W., Sheng D., Sloan S.W., Yu H.S.: Finite element analysis of cone penetration in cohesionless soil. Comput. Geotech. 31(7), 517–528 (2004)

    Article  Google Scholar 

  15. Parkin A.K., Lunne T.: Boundary effects in the laboratory calibration of a cone penetrometer in sand. Proc. 2nd Eur. Symp. Penetration Test., Amsterdam 2, 761–768 (1982)

    Google Scholar 

  16. Houlsby G.T., Hitchman R.: Calibration chamber tests of a cone penetrometer in sand. Géotechnique 38, 575–587 (1988)

    Google Scholar 

  17. Phillips, R., Valsangkar, A.J.: An experimental investigation of factors affecting penetration resistance in granular soils in centrifuge modelling. Research report: CUED/D-SOILS/TR210, Department of Engineering, Cambridge University, UK (1987)

  18. Bolton, M.D., Gui, M.W.: The study of relative density and boundary effects for cone penetration tests in centrifuge. Research report: CUED/D-SOILS/TR256, Department of Engineering, Cambridge University, UK (1993)

  19. Teh C.I., Houlsby G.T.: An analytical study of the cone penetration test in clay. Géotechnique 41(1), 17–34 (1991)

    Google Scholar 

  20. Abu-Farsakh M., Tumay M., Voyiadjis G.: Numerical parametric study of piezocone penetration test in clays. Int. J. Geomech. 3(2), 170–181 (2003)

    Article  Google Scholar 

  21. Jiang M.J., Harris D., Zhu H.H.: Future continuum models for granular materials in penetration analyses. Granular Matter 9, 97–108 (2007)

    Article  Google Scholar 

  22. Khan A.S., Huang S.J.: Continuum Theory of Plasticity. Wiley, New work (1995)

    MATH  Google Scholar 

  23. Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)

    Article  Google Scholar 

  24. Calvetti F., Combe G., Lanier J.: Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohesive-Frictional Mater. 2, 121–163 (1997)

    Article  Google Scholar 

  25. Misra A., Jiang H.: Measured kinematic fields in the biaxial shear of granular materials. Comput. Geotech. 20, 267–285 (1997)

    Article  Google Scholar 

  26. Dedecker F., Chaze M., Dubujet P., Cambou B.: Specific features of strain in granular materials. Mech. Cohesive-Frictional Mater. 5, 173–179 (2000)

    Article  Google Scholar 

  27. Kuhn, M.R., Bagi, K.: Particle rotations in granular materials. In: Smyth, A.W. (ed.) 15th ASCE Engineering Mechanics Conference, June 2–5, Columbia University, New York. http://www.civil.columbia.edu/em2002/ (2002)

  28. Kuhn M.R.: Structured deformation in granular materials. Mech. Mater. 31(6), 407–429 (1999)

    Article  Google Scholar 

  29. Matsushima T., Saomoto H., Tsubokawa Y., Yamada Y.: Grain rotation versus continuum rotation during shear deformation of granular assembly. Soils Found. 43(4), 95–106 (2003)

    Google Scholar 

  30. Jiang M.J., Harris D., Yu H.-S.: Kinematic models for non-coaxial granular materials: Part I: theories. Int. J. Numer. Anal. Methods Geomech. 29(7), 643–661 (2005)

    Article  MATH  Google Scholar 

  31. Jiang M.J., Yu H.-S., Harris D.: Kinematic variables bridging discrete and continuum granular mechanics. Mech. Res. Commun. 33(5), 651–666 (2006)

    Article  MathSciNet  Google Scholar 

  32. Cosserat, E., Cosserat, F.: Theorie des corps deformable. Herman et fils, Paris (1909)

  33. Eringen, A.C.: Microcontinuum Field Theories. Springer, Berlin (July 1999)

  34. Drescher A., de Josselin de Jong G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 29, 337–351 (1972)

    Article  Google Scholar 

  35. Drescher A.: An experimental investigation of flow rules for granular materials using optically sensitive glass particles. Géotechnique 26(4), 591–601 (1976)

    Google Scholar 

  36. Savage J.C., Lockner D.C.: A test of the double-shearing model of flow for granular materials. J. Geophys. Res. 102(B6), 12287–12294 (1997)

    Article  ADS  Google Scholar 

  37. Harris W.W., Viggiani G., Mooney M.A., Finno R.J.: Use of stereophotogrammetry to analyze the development of shear bands in sand. Geotech. Testing J. ASTM 18(4), 405–420 (1995)

    Google Scholar 

  38. Cundall, P.A., Strack, O.D.L.: The distinct element method as a tool for research in granular media. Part II. Department of Civil Engineering Report, University of Minnesota, Minnesota (1979)

  39. Cundall P.A., Strack O.D.L.: The distinct numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Google Scholar 

  40. Cundall P.A.: Numerical experiments of localisation in frictional materials. Ingen.-Arch. 59(2), 148–159 (1989)

    Article  Google Scholar 

  41. Calvetti F., Combe G., Lanier J.: Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohesive-Frictional Mater. 2, 121–163 (1997)

    Article  Google Scholar 

  42. Thornton C.: Force transmission in granular media. KONA Powder Part. 15, 81–90 (1997)

    Google Scholar 

  43. Bardet J.P., Proubet J.: A numerical investigation of the structure of persistent shear bands in granular media. Géotechnique 41(4), 599–613 (1991)

    Google Scholar 

  44. Ting J.M., Corkum B.T., Kauffman C.R., Greco C.: Discrete numerical model for soil mechanics. J. Geotech. Eng. ASCE 115(3), 379–398 (1989)

    Article  Google Scholar 

  45. Thornton C.: Numerical simulation of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Google Scholar 

  46. Jiang M.J., Leroueil S., Konrad J.M.: Insight into shear strength functions of unsaturated granulates by DEM analyses. Comput. Geotech. 31(6), 473–489 (2004)

    Article  Google Scholar 

  47. Rothenburg L., Bathurst R.J.: Micromechanical features of granular assemblies with planar elliptical particles. Géotechnique 42, 79–95 (1992)

    Google Scholar 

  48. Jiang M.J., Harris D., Yu H.S.: Kinematic models for non-coaxial granular materials: Part II: evaluation. Int. J. Numer. Anal. Methods Geomech. 29(7), 663–689 (2005)

    Article  MATH  Google Scholar 

  49. Huang A.B., Ma M.Y.: An analytical study of cone penetration tests in granular material. Can. Geotech. J. 31, 91–103 (1994)

    Article  Google Scholar 

  50. Biarez J., Burel M., Wack B.: Contribution à l’étude de la force portent des foundation. Proc. 5th Int. Conf. Soil Mech. Found. Eng., Paris 1, 603–609 (1961)

    Google Scholar 

  51. Hu G.: Bearing capacity of foundations with overburden shear. Sols-Soils 13, 11–18 (1965)

    Google Scholar 

  52. Berezantev K., : Load bearing capacity and deformation of piled foundations. Proc. 5th Int. Conf. Soil Mech, Found. Eng. 1, 11–27 (1961)

    Google Scholar 

  53. Vesic A.S.: Bearing capacity of deep foundations in sand. Hwy. Res. Board Rec. 39, 112–153 (1963)

    Google Scholar 

  54. Jiang M.J., Konrad J.M., Leroueil S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Article  Google Scholar 

  55. Jiang M.J., Leroueil S., Konrad J.M.: Yielding of microstructured geomaterial by DEM analysis. J. Eng. Mech. ASCE 131(11), 1209–1213 (2005)

    Article  Google Scholar 

  56. Jiang M.J., Yu H.S., Harris D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  57. Jiang M.J., Yu H.S., Harris D.: Discrete element modelling of deep penetration in granular soils. Int. J. Numer. Anal. Methods Geomech. 30(4), 335–361 (2006)

    Article  MATH  Google Scholar 

  58. Jiang M.J., Yu H.S., Harris D.: Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int. J. Numer. Anal. Methods Geomech. 30, 723–761 (2006)

    Article  Google Scholar 

  59. Jiang M.J., Yu H.S., Leroueil S.: A simple and efficient approach to capturing bonding effect in naturally micro-structured sands by Discrete Element Method. Int. J. Numer. Methods Eng. 69(4), 1158–1193 (2007)

    Article  Google Scholar 

  60. Sharp, M.K., Dobry, R.: Determination of liquefaction triggering from CPT. http://geoscience.wes.army.mil/Sharp-FIGEC.PDF (2001)

  61. Bolton M.D., Gui M.W., Garnier J., Corte J.F., Bagge G., Laue J., Renzi R.: Centrifuge cone penetration tests in sand. Géotechnique 49(4), 543–552 (1999)

    Article  Google Scholar 

  62. Phillips, R., Gui, M.W.: Cone penetrometer testing: Phase I report. In-situ Investigation EEC Contract: SC1-CT91-0676. Department of Engineering, Cambridge University, UK (1992)

  63. Take W.A., Valsangkar A.J.: Earth pressure on unyielding retaining walls of narrow backfill width. Can. Geotech. J. 38(6), 1220–1230 (2001)

    Article  Google Scholar 

  64. McDowell G.R., Bolton M.D.: Effect of particle size distribution on pile tip resistance in calcareous sand in the geotechnical centrifuge. Granular Matter 2(4), 179–187 (2000)

    Article  Google Scholar 

  65. Lobo-Guerrero S., Vallejo L.E.: Influence of pile shape and pile interaction on the crushable behavior of granular materials around driven piles: DEM analyses. Granular Matter 9(3–4), 241–250 (2007)

    Article  Google Scholar 

  66. Sibille L., Froiio F.: A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granular Matter 9, 183–193 (2007)

    Article  Google Scholar 

  67. Walsh S.D.C., Tordesillas A., Peters J.F.: Development of micromechanical models for granular media. The projection problem. Granular Matter 9, 337–352 (2007)

    Article  Google Scholar 

  68. Peña A.A., García-Rojo R., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granular Matter 9, 279–291 (2007)

    Article  Google Scholar 

  69. Wang J., Dove J.E., Gutierrez M.S.: Determining particulate–solid interphase strength using shear-induced anisotropy. Granular Matter 9, 231–240 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, M.J., Zhu, H.H. & Harris, D. Classical and non-classical kinematic fields of two-dimensional penetration tests on granular ground by discrete element method analyses. Granular Matter 10, 439–455 (2008). https://doi.org/10.1007/s10035-008-0107-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-008-0107-1

Keywords

Navigation