Granular Matter

, 10:353 | Cite as

Granular flows down inclined channels with a strain-rate dependent friction coefficient. Part I: Non-cohesive materials



The flow of a granular material down an incline of finite width with a strain-rate dependent coefficient of friction and a conical yield criterion is semi-analytically obtained using a characteristic method for flows on a deep layer of grains. This analysis leads to a flow field with three distinct zones: a Bagnold-flow zone below the free surface, a dead-zone and a matching zone between the two, linked to slippage at the wall. A good agreement between the computed flow field and experimental data is obtained.


Granular materials Surface flows 


  1. 1.
    Balmforth N.J., Kerswell R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399–428 (2005)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Cleaver J.A.S., Nedderman R.M.: Theoretical prediction of stress and velocity profiles in conical hoppers. Chem. Eng. Sci 48, 3693–3702 (1993)CrossRefGoogle Scholar
  3. 3.
    Da Cruz F., Emam S., Prochnow M., Roux J.-N., Chevoir F.: Rheophysics of dense granular materials: discrete simulations of plane shear. Phys. Rev. E 72, 021309 (2005)CrossRefADSGoogle Scholar
  4. 4.
    de Ryck, A.: Granular flows down inclined channels with a strain-rate dependent friction coefficient. Part II: Cohesive materials. Granular Matter (2007). doi:10.1007/s10035-008-0106-2
  5. 5.
    Jenike A.W.: A theory of flow of particulate solids in converging and diverging channels based on a conical yield function. Powder Technol. 50, 229–236 (1987)CrossRefGoogle Scholar
  6. 6.
    Jop P., Forterre Y., Pouliquen O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Midi G.D.R.: On dense granular flows. Eur. Phys. J. E 14(4), 341–365 (2004)Google Scholar
  8. 8.
    Nedderman R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge (1992)Google Scholar
  9. 9.
    Savage S.B.: The mechanics of rapid granular flows. Adv. Appl. Mech. 24, 289–366 (1984)MATHCrossRefGoogle Scholar
  10. 10.
    Savage S.B., Hutter K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Staron L., Hinch E.J.: The spreading of a granular mass: role ofgrain properties and initial conditions. Granular Matter 9, 205–217 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.École des Mines d’Albi, UMR CNRS 2392AlbiFrance

Personalised recommendations