Skip to main content
Log in

Molecular dynamics simulation of the forces between colloidal nanoparticles in Lennard–Jones and n-decane solvent

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Molecular-dynamics is utilized to simulate solvation forces between two nanoparticles immersed in two different solvents: Lennard–Jones spheres and and n-decane. Three different sizes and shapes of solvophilic nanoparticles are investigated. Nanoparticles in the Lennard–Jones liquid exhibit solvation forces that oscillate between attraction and repulsion as the nanoparticle separation increases. The magnitude of these solvation forces increases with particle size and depends on particle shape, consistent with the Derjaguin approximation. When n-decane is the solvent, the solvation forces are negligible for small nanoparticles, with sizes comparable to the end-to-end distance of all-trans decane. The solvation forces oscillate between attraction and repulsion for sufficiently large nanoparticles in decane—however the Derjaguin approximation does not appear to be effective at describing the dependence of nanoparticles forces on nanoparticle size and shape when decane is the solvent. For both the Lennard–Jones and n-decane solvents, it is apparent that the force profiles are influenced by the surface roughness of the nanoparticles. These factors should be taken into account in efforts to engineer colloidal suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Derjaguin B.V. and Landau L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. URSS 14: 633–662

    Google Scholar 

  2. Israelachvili J.N. (1992). Intermolecular and Surface Forces, 2nd edn. Academic, New York

    Google Scholar 

  3. Qin Y. and Fichthorn K.A. (2003). A molecular dynamics simulation study of forces between colloidal nanoparticles in a Lennard–Jones liquid. J. Chem. Phys. 119: 9745–9754

    Article  ADS  Google Scholar 

  4. Qin Y. and Fichthorn K.A. (2006). Solvation forces between colloidal nanoparticles: directed alignment. Phys. Rev. E 73: 020401–020404

    Article  ADS  Google Scholar 

  5. Fichthorn K.A. and Qin Y. (2006). Molecular dynamics simulation of colloidal nanoparticle forces. Ind. Eng. Chem. Res. 45: 5477–5480

    Article  Google Scholar 

  6. Qin Y. and Fichthorn K.A. (2006). Solvophobicity at large and intermediate length scales: Size, shape and solvent effects. Phys. Rev. E 74: 020401–020404

    Article  ADS  Google Scholar 

  7. Qin Y. and Fichthorn K.A. (2007). Molecular dynamics simulation of the forces between colloidal nanoparticles in n-decane solvent. J. Chem. Phys. 127: 144911

    Article  Google Scholar 

  8. Horn R.G. and Israelachvili J.N. (1981). Direct measurement of structural forces between 2 surfaces in a non-polar liquid. J. Chem. Phys. 75: 1400–1411

    Article  ADS  Google Scholar 

  9. Christenson H.K. (1983). Experimental measurements of solvation forces in non-polar liquids. J. Chem. Phys. 78: 6906–6913

    Article  ADS  Google Scholar 

  10. Israelachvili J.N. (1992). Adhesion forces between surfaces in liquids and condensable vapours. Surf. Sci. Rep. 14: 109–159

    Article  Google Scholar 

  11. Heuberger M. and Zäch M. (2003). Nanofluidics: structural forces, density anomalies and the pivotal role of nanoparticles. Langmuir 19: 1943–1947

    Article  Google Scholar 

  12. O’Shea S.J., Welland M.E. and Rayment T. (1992). Solvation forces near a graphite surface measured with an atomic force microscope. Appl. Phys. Lett. 60: 2356–2359

    Article  ADS  Google Scholar 

  13. Klein D.L. and McEuen P.L. (1995). Conducting atomic-force microscopy of alkane layers on graphite. Appl. Phys. Lett. 66: 2478–2481

    Article  ADS  Google Scholar 

  14. Lim R. and O’Shea S.J. (2002). Solvation forces in branched molecular liquids. Phys. Rev. Lett. 88: 246101–246104

    Article  ADS  Google Scholar 

  15. Snook I.K. and Megen W. (1980). Solvation forces in simple dense fluids. J. Chem. Phys. 72: 2907–2913

    Article  ADS  Google Scholar 

  16. Wang Y., Hill K. and Harris J.G. (1993). Thin-films of n-octane confined between parallel solid-surfaces—structure and adhesive forces vs film thickness from molecular-dynamics simulations. J. Phys. Chem. 97: 9013–9021

    Article  Google Scholar 

  17. Forsman J., Jönsson B., Woodward C.E. and Wennerström H. (1997). Attractive surface forces due to liquid density depression. J. Phys. Chem. B 101: 4253–4259

    Article  Google Scholar 

  18. Gao J.P., Luedtke W.D. and Landman U. (1997). Layering transitions and dynamics of confined liquid films. Phys. Rev. Lett. 79: 705–708

    Article  ADS  Google Scholar 

  19. Dijkstra M. (1997). Confined thin films of linear and branched alkanes. J. Chem. Phys. 107: 3277–3288

    Article  ADS  Google Scholar 

  20. Wang J.-C. and Fichthorn K.A. (2000). A method for molecular dynamics simulation of confined fluids. J. Chem. Phys. 112: 8252–8259

    Article  ADS  Google Scholar 

  21. Porcheron F., Rousseau B., Schoen M. and Fuchs A.H. (2001). Structure and solvation forces in confined alkane films. Phys. Chem. Chem. Phys. 3: 1155–1159

    Article  Google Scholar 

  22. Wang J.-C. and Fichthorn K.A. (2002). Molecular dynamics studies of the effects of chain branching on the properties of confined alkanes. J. Chem. Phys. 116: 410–417

    Article  ADS  Google Scholar 

  23. Wallqvist A. and Berne B.J. (1995). Molecular-dynamics study of the dependence of water solvation free-energy on solute curvature and surface-area. J. Phys. Chem. 99: 2885–2892

    Article  Google Scholar 

  24. Bolhuis P.G. and Chandler D. (2000). Transition path sampling of cavitation between molecular scale solvophobic surfaces. J. Chem. Phys. 113: 8154–8160

    Article  ADS  Google Scholar 

  25. Huang X., Margulis C.J. and Berne B.J. (2003). Dewetting-induced collapse of hydrophobic particles. Proc. Natl. Acad. Sci. USA 100: 11953–11958

    Article  ADS  Google Scholar 

  26. Shinto H., Miyahara M. and Higashitani K. (1999). Evaluation of interaction forces between macroparticles in simple fluids by molecular dynamics simulation. J. Colloid Interf. Sci. 209: 79–85

    Article  Google Scholar 

  27. Ryckaert J.P. and Bellemans A. (1978). Molecular-dynamics of liquid alkanes. Faraday Discuss. Chem. Soc. 66: 95–106

    Article  Google Scholar 

  28. Andersen H.C. (1983). RATTLE—a velocity version of the shake algorithm for molecular-dynamics calculations. J. Comput. Phys. 52: 24–34

    Article  MATH  ADS  Google Scholar 

  29. Berendsen H.J.C. and Ploeg P. (1982). Molecular-dynamics simulation of a bilayer-membrane. J. Chem. Phys. 76: 3271–3276

    Article  ADS  Google Scholar 

  30. Ryckaert J.P. and Bellemans A. (1975). Molecular-dynamics of liquid normal-butane near its boiling-point. Chem. Phys. Lett. 30: 123–125

    Article  ADS  Google Scholar 

  31. Smit B. (1992). Phase-diagrams of Lennard–Jones fluids. J. Chem. Phys. 96: 8639–8640

    Article  ADS  Google Scholar 

  32. Allen M.P. and Tildesley D.J. (1987). Computer Simulation of Liquids. Oxford University Press, New York

    MATH  Google Scholar 

  33. Fichthorn K.A. and Miron R.A. (2002). Thermal desorption of large molecules from solid surfaces. Phys. Rev. Lett. 89: 196103–196106

    Article  ADS  Google Scholar 

  34. Derjaguin B.V. (1934). Friction and adhesion IV. The theory of adhesion of small particles. Kolloid Zeits. 69: 155–164

    Article  Google Scholar 

  35. Christenson H.K. (1986). Interactions between hydrocarbon surfaces in a nonpolar liquid—effect of surface-properties on solvation forces. J. Phys. Chem. 90: 4–6

    Article  Google Scholar 

  36. Zhu Y. and Granick S. (2003). Reassessment of solidification in fluids confined between mica sheets. Langmuir 19: 8148–8151

    Article  Google Scholar 

  37. Frink L.J.D. and Swol F. (1998). Solvation forces between rough surfaces. J. Chem. Phys. 108: 5588–5598

    Article  ADS  Google Scholar 

  38. Ghatak C. and Ayappa K.G. (2004). Solvation force, structure and thermodynamics of fluids confined in geometrically rough pores. J. Chem. Phys. 120: 9703–9714

    Article  ADS  Google Scholar 

  39. Niederberger M. and Cölfen H. (2006). Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8: 3271–3287

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen A. Fichthorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fichthorn, K.A., Qin, Y. Molecular dynamics simulation of the forces between colloidal nanoparticles in Lennard–Jones and n-decane solvent. Granular Matter 10, 105–111 (2008). https://doi.org/10.1007/s10035-007-0074-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0074-y

Keywords

Navigation