Skip to main content
Log in

Dual imaging modality of granular flow based on ECT sensors

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In this study, a previously developed dual modality imaging system is applied to image the flow of granular matter with different electrical properties in cylindrical vessels. The imaging system is based on both capacitance and power measurements acquired by an electrical capacitance tomography (ECT) sensor located around the vessel. The measurement data are then used to reconstruct cross-sectional images of both permittivity and conductivity distributions. A neural network multi-criterion optimization reconstruction technique (NN-MOIRT) is used for the inverse (reconstruction) problem. The contribution of this technology to the field of granular matters is explored through review of research articles that can be a direct application of this development. We discuss the capabilities of this dual-modality acquisition system using synthetic data for granular matter with different electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyakowski T. (1996). Process tomography applied to multi-phase flow measurement. Meas. Sci. Technol. 7: 343–353

    Article  ADS  Google Scholar 

  2. Warsito W. and Fan L.-S. (2001). Measurements of real time flow structure in gas–liquid and gas–liquid–solid flow systems using electrical capacitance tomography (ECT). Meas. Sci. Technol. 56: 6455–6462

    Google Scholar 

  3. Yang W.Q., Beck M.S. and Byars M. (1995). Electrical capacitance tomography—from design to applications. Meas. Control 28: 261–266

    Google Scholar 

  4. Brown B. (2001). Medical impedance tomography and process impedance tomography: a brief review. Meas. Sci. Technol. 12: 991–996

    Article  ADS  Google Scholar 

  5. Hoyle B., Jia X., Podd F., Schlaberg H., Tan H., Wang M., West R., Williams R. and York T. (2001). Design and application of a multi-modal process tomography system. Meas. Sci. Technol. 12: 1157–1165

    Article  ADS  Google Scholar 

  6. Cheney M., Isakson D. and Newell J. (1999). Electrical impedancetomography. SIAM Rev. 41: 85–101

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheney M., Isakson D. and Newell J. (1999). Electrical impedance tomography. SIAM Rev. 41: 85–101

    Article  MATH  MathSciNet  Google Scholar 

  8. Williams R. and Beck M. (1995). Process tomography: principles, techniques and applications. Butterworth-Heinemann, Oxford

    Google Scholar 

  9. Warsito W. and Fan L.-S. (2001). Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography. Meas. Sci. Technol. 12: 2198–2210

    Article  ADS  Google Scholar 

  10. Marashdeh Q., Warsito W., Fan L.-S. and Teixeira F.L. (2006). Nonlinear forward problem solution for electrical capacitance tomography using feed-forward neural network. IEEE Sens. J. 6: 441–449

    Article  Google Scholar 

  11. Yang W. (1996). Hardware design of electrical capacitance tomography systems. Meas. Sci. Technol. 7: 225–232

    Article  ADS  Google Scholar 

  12. Marashdeh, Q., Warsito, W., Fan, L.-S., Teixeira, F.L.: A multimodal tomography system based on ECT sensors. IEEE Sens. J. 7, 426–433 (2007)

    Article  Google Scholar 

  13. Williams R. and Jia X. (2003). Tomography imaging of particulate systems. Adv. Powder Technol. 14: 1–16

    Article  Google Scholar 

  14. Bolton J.G., Hooper C., Mann R. and Stitt E. (2004). Flow distribution and velocity measurement in a radial flow fixed bed reactor using electrical resistance tomography. Chem. Eng. Sci. 59: 1989–1997

    Article  Google Scholar 

  15. Gonzalez, R.L., Leyet, Y., Guerrero, F., de Los S Guerra, J., Vent, M., Eiras, J.A.: Relaxation dynamics of the conductive processes for PbNb 2 O 6 ferroelectric ceramics in the frequency and time domain. J. Phys. Condens. Matter 19, 12 (2007)

    Article  Google Scholar 

  16. Liang X.-G. and Qu W. (1999). Effective thermal conductivity of gas–solid composite materials and the temperature difference effect at high temperature. Int. J. Heat Mass Transf. 42: 1885–18893

    Article  MATH  Google Scholar 

  17. DiBiaso H., English B. and Allen M. (2004). Solid-phase conductive fuels for chemical micro-actuators. Sens. Actuators A 111: 260–266

    Article  Google Scholar 

  18. He D. and Ekere N. (2004). Effect of particule size ratio on the conducting percolation threshold of granular conductive-insulating composites. J. Phys. D Appl. Phys. 37: 1848–1852

    Article  ADS  Google Scholar 

  19. Yao J. (2006). On the electrostatic equilibrium of granular flow in pneumatic conveying systems. AIChE J. 52: 3775–3793

    Article  Google Scholar 

  20. Herminghaus S. (2005). Dynamics of wet granular matter. Adv. Phys. 54: 221

    Article  ADS  Google Scholar 

  21. Tortora P., Ceccio S., O’Hern T., Trjillo S. and Torczynski J. (2006). Quantitative measurement of solids distribution in gas-solider riser flows using electrical impedance tomography and gamma densitometry tomography. Int. J. Multiph. 32: 972–995

    Article  MATH  Google Scholar 

  22. Massoudi M. (2006). On the heat flux vector for flowing granular materials—part I: Effective thermal conductivity and background. Math. Methods Appl. Sci. 29: 1585–1598

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Geminard J. and Gayvallet H. (2001). Thermal conductivity of a partially wet granular material. Phys. Rev. E 64: 5

    Article  Google Scholar 

  24. Sixou B. and Travers P. (1998). Simulation of the temperature dependence of the DC conductivity in granular systems with the effective medium theory. J. Phys. Condens. Matters 10: 593–600

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qussai Marashdeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marashdeh, Q., Warsito, W., Fan, LS. et al. Dual imaging modality of granular flow based on ECT sensors. Granular Matter 10, 75–80 (2008). https://doi.org/10.1007/s10035-007-0070-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0070-2

Keywords

Navigation