Skip to main content
Log in

FE-investigations of a deterministic and statistical size effect in granular bodies within a micro-polar hypoplasticity

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The paper deals with numerical investigations of a deterministic and statistical size effect in granular bodies during shearing of an infinite layer under plane strain conditions and free dilatancy. For a simulation of the mechanical behavior of a cohesionless granular material during a monotonous deformation path, a micro-polar hypoplastic constitutive was used which takes into account particle rotations, curvatures, non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. The proposed model captures the essential mechanical features of granular bodies in a wide range of densities and pressures with a single set of constants. To describe a deterministic size effect, the calculations were carried out with an uniform distribution of the initial void ratio for four different heights of the granular layer: 5, 50, 500 and 2,000 mm. To investigate a statistical size effect, the distribution of the initial void ratio in infinite granular layers was assumed to be spatially correlated. As only primary stochastic calculations were performed, single examples of different random fields of the initial void ratio were generated. For this purpose a conditional rejection method was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wernick, E.: Tragfähigkeit zylindrischer Anker in Sand unter besonderer Berücksichtigung des Dilatanzverhaltens. Publication Series of the Institute for Rock and Soil Mechanics, University Karlsruhe 75 (1978)

  2. Tatsuoka F., Goto S., Tanaka T., Tani K. and Kimura Y. (1997). Particle size effects on bearing capacity of footing on granular material. In: Asaoka, A., Adachi, T., and Oka, F. (eds) Deformation and Progressive Failure in Geomechanics., pp 133–138. Pergamon, New York

    Google Scholar 

  3. Tejchman J. (2004). FE-simulations of a direct wall shear box test. Soils Found. 44(4): 67–81

    Google Scholar 

  4. Bazant Z.P. and Chen E.P. (1997). Scaling of structural failure. Appl. Mech. Rev. 50(10): 593–627

    Google Scholar 

  5. Bazant Z. and Planas J. (1998). Fracture and size effect in concrete and other quasi-brittle materials. CRC Press LLC, Boca Raton

    Google Scholar 

  6. van Vliet, M.R.A.: Size effect in tensile fracture of concrete and rock. PhD thesis, University of Delft (2000)

  7. Chen, J., Yuan, H., Kalkhof, D.: A nonlocal damage model for elastoplastic materials based on gradient plasticity theory. Report Nr.01–13, Paul Scherrer Institute, 1–130 (2001)

  8. Le Bellego C., Dube J.F., Pijaudier-Cabot G. and Gerard B. (2003). Calibration of nonlocal damage model from size effect tests. Eur. J. Mech. A Solids 22: 33–46

    Article  MATH  Google Scholar 

  9. Weibull W. (1951). A statistical theory of the strength of materials. J. Appl. Mech. 18(9): 293–297

    MATH  Google Scholar 

  10. Carpinteri, A., Chiaia, B., Ferro, G.: Multifractal scaling law: an extensive application to nominal strength size effect of concrete structures. In: Mihashi, M., Okamura, H., Bazant, Z.P. (eds.) Size Effect Of Concrete Structures. E&FN Spon, 173, 185 (1994)

  11. Bazant Z. and Pang S.D. (2006). Computational structural reliability—a major challenge and opprtinity for concrete and other quasibrittle structures. In: Meschke, G., Mang, H. and Bicanic, N. (eds) Computational Modelling of Concrete Structures, EURO-C 2006., pp 845–856. Taylor and Francis, London

    Google Scholar 

  12. Vorechovsky M. and Matesova D. (2006). Size effect in concrete specimens under tension: interplay of sources. In: Meschke, G., Mang, H. and Bicanic, N. (eds) Computational Modelling of Concrete Structures, EURO-C 2006., pp 905–914. Taylor and Francis, London

    Google Scholar 

  13. Tejchman J. (2004). Influence of a characteristic length on shear zone formation in hypoplasticity with different enhancements. Comput. Geotech. 31(8): 595–611

    Article  Google Scholar 

  14. Regueiro R.A. and Borja R.I. (2001). Plane strain finite element analysis of pressure sensitive plasticity with strong discontinuity. Int. J. Solids Struct. 38(21): 3647–3672

    Article  MATH  Google Scholar 

  15. Gutierrez M.A. and Borst R. (1998). Energy dissipation, internal length scale and localization patterning—a probabilistic approach. In: Idelsohn, S., Onate, E. and Dvorkin, E. (eds) Computational Mechanics., pp 1–9. CIMNE, Barcelona

    Google Scholar 

  16. Fenton G.A. and Griffiths D.V. (2002). Probabilistic foundation settlement on spatially random soil. J. Geotech. Geoenviron. Eng. 128(5): 381–389

    Article  Google Scholar 

  17. Niemunis, A., Wichtmann, T., Petryna, Y., Triantafyllidis, T.: Stochastic modeling of settlements due to cyclic loading for soil-structure interaction. In: Proc. Int. Conf. Structural Damage and Lifetime Assessment, Rome, 1–8 (2005)

  18. Tejchman J. and Bauer E. (1996). Numerical simulation of shear band formation with a polar hypoplastic model. Comput. Geotech. 19(3): 221–244

    Article  Google Scholar 

  19. Tejchman J. and Gudehus G. (2001). Shearing of a narrow granular strip with polar quantities. J. Numer. Anal. Methods Geomech. 25: 1–18

    Article  MATH  Google Scholar 

  20. Tejchman J. and Niemunis A. (2006). FE-studies on shear localization in an anisotropic micro-polar hypoplastic granular material. Granular Matter 8(3–4): 205–220

    Article  Google Scholar 

  21. Walukiewicz H., Bielewicz E. and Górski J. (1997). Simulation of nonhomogeneous random fields for structural applications. Comput. Struct. 64(1–4): 491–498

    Article  MATH  Google Scholar 

  22. Górski, J.: Non-linear models of structures with random geometric and material imperfections simulation-based approach. Monography, vol. 68. Gdansk University of Technology (2006)

  23. Przewłócki J. and Górski J. (2001). Strip foundation on 2-D and 3-D random subsoil. Probab. Eng. Mech. 16: 121–136

    Article  Google Scholar 

  24. Rechenmacher A.L. and Finno R.J. (2004). Digital image correlation to evaluate shear banding in dilative sands. Geotech. Test. J. 27(1): 13–22

    Article  Google Scholar 

  25. Rechenmacher A.L. (2006). Grain-scale processes governing shear band initiation and evolution of sands. J. Mech. Phys. Solids 54: 22–45

    Article  MATH  ADS  Google Scholar 

  26. Slominski C., Niedostatkiewicz M. and Tejchman J. (2006). Deformation measurements in granular bodies using a particle image velocimetry technique. Arch. Hydroeng. Environ. Mech. LIII(1): 71–94

    Google Scholar 

  27. Pena A.A., Herrmann H.J., Lizcano A. and Alonso-Marroquin F. (2005). Investigation of the asymptotic states of granular materials using a discrete model of anisotropic particles. In: Garcia-Rojo, H. (eds) Powders and Grains., pp 697–700. Taylor and Francis, London

    Google Scholar 

  28. Gudehus G. (1996). A comprehensive constitutive equation for granular materials. Soils Found. 36(1): 1–12

    Google Scholar 

  29. Bauer E. (1996). Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36(1): 13–26

    Google Scholar 

  30. von Wolffersdorff P.A. (1996). A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive Frictional Mater. 1: 251–271

    Article  Google Scholar 

  31. Wang C.C. (1970). A new representation theorem for isotropic functions. J. Rat. Mech. Anal. 36: 166–223

    Article  MATH  Google Scholar 

  32. Wu W. and Niemunis A. (1997). Beyond failure in granular materials. Int. J. Numer. Anal. Methods Geomech. 21: 153–174

    Article  MATH  Google Scholar 

  33. Wu W. and Niemunis S.A. (1996). Failure criterion, flow rule and dissipation function derived from hypoplasticity. Mech. Cohesive Frictional Mater. 1: 145–163

    Article  Google Scholar 

  34. Herle I. and Gudehus G. (1999). Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohesive Frictional Mater. 4(5): 461–486

    Article  Google Scholar 

  35. Wu, W., Kolymbas, D.: Hypoplasticity then and now. In: Kolymbas, D. (ed.) Constitutive Modeling of Granular Materials, pp. 57–105. Springer, Heidlberg (2000)

  36. Tamagnini C., Viggiani C. and Chambon R. (2000). A review of two different approaches to hypoplasticity. In: Kolymbas, D. (eds) Constitutive Modeling of Granular Materials., pp 107–145. Springer, Heidlberg

    Google Scholar 

  37. Maier, T.: Numerische Modellierung der Entfestigung im Rahmen der Hypoplastizität. PhD Thesis, University of Dortmund (2002)

  38. Oda M. (1993). Micro-fabric and couple stress in shear bands of granular materials. In: Thornton, C. (eds) Powders and Grains., pp 161–167. Balkema, Rotterdam

    Google Scholar 

  39. Pasternak E. and Mühlhaus H.-B. (2001). Cosserat continuum modelling of granulate materials. In: Valliappan, S. and Khalili, N. (eds) Computational Mechanics—New Frontiers for New Millennium., pp 1189–1194. Elsevier, Amsterdam

    Google Scholar 

  40. Schäfer, H.: Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, Festschrift Tolmien, W., Berlin, Akademie-Verlag (1962)

  41. Tejchman J. and Herle I. (1999). A class A prediction of the bearing capacity of plane strain footings on granular material. Soils Found. 39(5): 47–60

    Google Scholar 

  42. Florian A. (1992). An efficient sampling scheme: Updated latin hypercube sampling. Probab. Eng. Mech. 2: 123–130

    Article  Google Scholar 

  43. Groen, A.E.: Three-dimensional elasto-plastic analysis of soils. PhD Thesis, Delft University, pp. 1–114 (1997)

  44. Tejchman J. (2006). Effect of fluctuation of current void ratio on the shear zone formation in granular bodies within micro-polar hypoplasticity. Comput. Geotech. 33(1): 29–46

    Article  Google Scholar 

  45. Tejchman, J., Górski, J.: Deterministic and statistical size effect during shearing of granular layer within a micro-polar hypoplasticity. Int. J. Numer. Anal. Methods Geomech. (2006, in print)

  46. Tejchman, J., Górski, J.: FE-investigations of a deterministic and statistical size effect in granular bodies within micro-polar hypoplasticity. In: Proceedings of 20th Canberra International Physics Summer School and Workshop on Granular Materials. The Australian National University, Canberra, 4–8 December 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tejchman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejchman, J., Górski, J. FE-investigations of a deterministic and statistical size effect in granular bodies within a micro-polar hypoplasticity. Granular Matter 9, 439–453 (2007). https://doi.org/10.1007/s10035-007-0041-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-007-0041-7

Navigation