Abstract
We present a numerical photogrammetry technique for obtaining semi–automated measurements concerning kinematic fields, i.e. translation and rotation of each “grain”, and fabric properties of a two-dimensional analogue granular material. An example is given in which the technique is applied in a biaxial compression test on a specimen consisting of 1,300 rods. The information that can be recorded by the technique is discussed along with its accuracy.
This is a preview of subscription content, access via your institution.
References
- 1.
Oda M. (1997). A micro-deformation model for the dilatancy of granular media. In: Chang, C.S., Misra, A., Liang, R.Y. and Babic, M. (eds) Mechanics of Deformation and Flow of Particulate Material, pp 24–87. ASCE and ASME, Springer, Berlin Heidelberg New York
- 2.
Åstrøm J.A., Herrmann H.J. and Timonen J. (2000). Granular packings and fault zones. Phys. Rev. Lett. 84: 4638–4641
- 3.
Alonso-Marroquín, F., Vardoulakis, I.: Micromechanics of shear bands in granular media. In: García–Rojo, R., Herrmann, H. J., MacNamara, S. (eds.) Powders and Grains 2005, Stuttgart, 18–22 July, pp 701–704. Taylor Francis Group, London (2005)
- 4.
Ehlers W. and Volk W. (1998). On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. Int. J. Solids Struct. 35: 4597–4617
- 5.
Froiio F., Tomassetti G. and Vardoulakis I. (2006). Mechanics of granular materials: the discrete and the continuum descriptions juxtaposed. Int. J. Solids Struct. 43(25–26): 7684–7720
- 6.
Gardiner B.S. and Tordesillas A. (2004). Micromechanics of shear bands. Int. J. Solids Struct. 41: 5885–5901
- 7.
Mühlhaus H.-B. and Vardoulakis I. (1987). The thickness of shear band in granular materials. Géotechnique 37: 271–283
- 8.
Cundall P.A. and Strack O.D.L. (1979). A discrete numerical model for granular assemblies. Géotechnique 29(1): 47–65
- 9.
Moreau J.J. (1994). Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids 13(4): 93–114
- 10.
Schneebeli G. (1956). Une analogie mécanique pour les terres sans cohésion. C.R. Acad. Sci. 243: 125–126
- 11.
Dantu, P.: Contribution à l’étude mécanique et géométrique des milieux pulvérulent. In: Proc. 4th Int. Conf. Soil Mechanics and Foundation Engineering, pp 144–148. Butterworths Scientific Publication, London (1957)
- 12.
Drescher A. and de Josselin de Jong G. (1972). Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20: 337–351
- 13.
Calvetti F., Combe G. and Lanier J. (1997). Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohes.–Frict. Mater. 2: 121–163
- 14.
Misra A. and Jiang H. (1997). Measured kinematic fields in the biaxial shear of granular materials. Comput. Geotech. 20(3/4): 267–285
- 15.
Oda M., Kazama H. and Konishi J. (1998). Effects of induced anisotropy on the development of shear bands in granular materials. Mech. Mater. 28: 103–111
- 16.
Lanier J. and Jean M. (2000). Experiments and simulations with 2D disks assembly. Powder Technol. 109: 206–221
- 17.
Joer, H.: “1\({\gamma 2\varepsilon}\) ”: une nouvelle machine de cisaillement pour l’étude du comportement des milieux granulaires. PhD Thesis, UJF, Grenoble (1991)
- 18.
Joer H., Lanier J., Desrues J. and Flavigny E. (1992). “1\({\gamma 2\varepsilon}\) ”: a new shear apparatus to study the behavior of granular materials. Geotech. Testing J. 15(2): 129–137
- 19.
Joer H., Lanier J. and Fahey M. (1998). Deformation of granular materials due to rotation of principal axes. Géotechnique 48(5): 605–619
- 20.
Luding S. (2005). Shear flow modeling of cohesive and frictional fine powder. Powder Technol. 158: 45–50
- 21.
Bilotta E., Flora A., Lanier J. and Viggiani G. (2002). Experimental observation of the behaviour of a 2D granular material with inclusions. Riv. Ital. Geotecnica 2: 9–22
- 22.
Desrues J. and Viggiani G. (2004). Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech. 28: 279–321
- 23.
Kuhn M.R. (1999). Structured deformation in granular materials. Mech. Mater. 31: 407–429
- 24.
Iwashita K. and Oda M. (2000). Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109: 192–205
- 25.
Bardet J.P. and Proubet J. (1991). A numerical investigation of the structure of persistent shear bands in granular media. Géotechnique 41(4): 599–613
- 26.
Majmudar T.S. and Behringer R.P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature 435: 1079–1082
- 27.
Kruyt, N.P., Rothenburg, L.: Statistics of forces and relative displacements at contacts in biaxial deformation of granular materials. In: Bagi, K. (ed.) Proc. Quasi-static Deformations of Particulate Materials, Budapest, 24–28 August pp 141–150 (2003)
Author information
Affiliations
Corresponding author
Additional information
This work is funded by the EU project Degradation and Instabilities in Geomaterials with Application to Hazard Mitigation (DIGA) in the framework of the Human Potential Program, Research Training Networks (HPRN-CT-2002-00220).
Rights and permissions
About this article
Cite this article
Sibille, L., Froiio, F. A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granular Matter 9, 183 (2007). https://doi.org/10.1007/s10035-006-0032-0
Received:
Published:
Keywords
- 2D analogue granular materials
- Numerical photogrammetry
- Semi–automated measurements
- Particle translation and rotation
- Fabric