A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials


We present a numerical photogrammetry technique for obtaining semi–automated measurements concerning kinematic fields, i.e. translation and rotation of each “grain”, and fabric properties of a two-dimensional analogue granular material. An example is given in which the technique is applied in a biaxial compression test on a specimen consisting of 1,300 rods. The information that can be recorded by the technique is discussed along with its accuracy.

This is a preview of subscription content, access via your institution.


  1. 1.

    Oda M. (1997). A micro-deformation model for the dilatancy of granular media. In: Chang, C.S., Misra, A., Liang, R.Y. and Babic, M. (eds) Mechanics of Deformation and Flow of Particulate Material, pp 24–87. ASCE and ASME, Springer, Berlin Heidelberg New York

    Google Scholar 

  2. 2.

    Åstrøm J.A., Herrmann H.J. and Timonen J. (2000). Granular packings and fault zones. Phys. Rev. Lett. 84: 4638–4641

    Google Scholar 

  3. 3.

    Alonso-Marroquín, F., Vardoulakis, I.: Micromechanics of shear bands in granular media. In: García–Rojo, R., Herrmann, H. J., MacNamara, S. (eds.) Powders and Grains 2005, Stuttgart, 18–22 July, pp 701–704. Taylor Francis Group, London (2005)

  4. 4.

    Ehlers W. and Volk W. (1998). On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials. Int. J. Solids Struct. 35: 4597–4617

    MATH  Article  Google Scholar 

  5. 5.

    Froiio F., Tomassetti G. and Vardoulakis I. (2006). Mechanics of granular materials: the discrete and the continuum descriptions juxtaposed. Int. J. Solids Struct. 43(25–26): 7684–7720

    Article  MathSciNet  MATH  Google Scholar 

  6. 6.

    Gardiner B.S. and Tordesillas A. (2004). Micromechanics of shear bands. Int. J. Solids Struct. 41: 5885–5901

    MATH  Article  Google Scholar 

  7. 7.

    Mühlhaus H.-B. and Vardoulakis I. (1987). The thickness of shear band in granular materials. Géotechnique 37: 271–283

    Google Scholar 

  8. 8.

    Cundall P.A. and Strack O.D.L. (1979). A discrete numerical model for granular assemblies. Géotechnique 29(1): 47–65

    Google Scholar 

  9. 9.

    Moreau J.J. (1994). Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A/Solids 13(4): 93–114

    MATH  MathSciNet  Google Scholar 

  10. 10.

    Schneebeli G. (1956). Une analogie mécanique pour les terres sans cohésion. C.R. Acad. Sci. 243: 125–126

    Google Scholar 

  11. 11.

    Dantu, P.: Contribution à l’étude mécanique et géométrique des milieux pulvérulent. In: Proc. 4th Int. Conf. Soil Mechanics and Foundation Engineering, pp 144–148. Butterworths Scientific Publication, London (1957)

  12. 12.

    Drescher A. and de Josselin de Jong G. (1972). Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20: 337–351

    Article  ADS  Google Scholar 

  13. 13.

    Calvetti F., Combe G. and Lanier J. (1997). Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path. Mech. Cohes.–Frict. Mater. 2: 121–163

    Article  Google Scholar 

  14. 14.

    Misra A. and Jiang H. (1997). Measured kinematic fields in the biaxial shear of granular materials. Comput. Geotech. 20(3/4): 267–285

    Article  Google Scholar 

  15. 15.

    Oda M., Kazama H. and Konishi J. (1998). Effects of induced anisotropy on the development of shear bands in granular materials. Mech. Mater. 28: 103–111

    Article  Google Scholar 

  16. 16.

    Lanier J. and Jean M. (2000). Experiments and simulations with 2D disks assembly. Powder Technol. 109: 206–221

    Article  Google Scholar 

  17. 17.

    Joer, H.: “1\({\gamma 2\varepsilon}\) ”: une nouvelle machine de cisaillement pour l’étude du comportement des milieux granulaires. PhD Thesis, UJF, Grenoble (1991)

  18. 18.

    Joer H., Lanier J., Desrues J. and Flavigny E. (1992). “1\({\gamma 2\varepsilon}\) ”: a new shear apparatus to study the behavior of granular materials. Geotech. Testing J. 15(2): 129–137

    Article  Google Scholar 

  19. 19.

    Joer H., Lanier J. and Fahey M. (1998). Deformation of granular materials due to rotation of principal axes. Géotechnique 48(5): 605–619

    Article  Google Scholar 

  20. 20.

    Luding S. (2005). Shear flow modeling of cohesive and frictional fine powder. Powder Technol. 158: 45–50

    Article  Google Scholar 

  21. 21.

    Bilotta E., Flora A., Lanier J. and Viggiani G. (2002). Experimental observation of the behaviour of a 2D granular material with inclusions. Riv. Ital. Geotecnica 2: 9–22

    Google Scholar 

  22. 22.

    Desrues J. and Viggiani G. (2004). Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int. J. Numer. Anal. Meth. Geomech. 28: 279–321

    Article  Google Scholar 

  23. 23.

    Kuhn M.R. (1999). Structured deformation in granular materials. Mech. Mater. 31: 407–429

    Article  Google Scholar 

  24. 24.

    Iwashita K. and Oda M. (2000). Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109: 192–205

    Article  Google Scholar 

  25. 25.

    Bardet J.P. and Proubet J. (1991). A numerical investigation of the structure of persistent shear bands in granular media. Géotechnique 41(4): 599–613

    Google Scholar 

  26. 26.

    Majmudar T.S. and Behringer R.P. (2005). Contact force measurements and stress-induced anisotropy in granular materials. Nature 435: 1079–1082

    Article  ADS  Google Scholar 

  27. 27.

    Kruyt, N.P., Rothenburg, L.: Statistics of forces and relative displacements at contacts in biaxial deformation of granular materials. In: Bagi, K. (ed.) Proc. Quasi-static Deformations of Particulate Materials, Budapest, 24–28 August pp 141–150 (2003)

Download references

Author information



Corresponding author

Correspondence to Luc Sibille.

Additional information

This work is funded by the EU project Degradation and Instabilities in Geomaterials with Application to Hazard Mitigation (DIGA) in the framework of the Human Potential Program, Research Training Networks (HPRN-CT-2002-00220).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sibille, L., Froiio, F. A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granular Matter 9, 183 (2007). https://doi.org/10.1007/s10035-006-0032-0

Download citation


  • 2D analogue granular materials
  • Numerical photogrammetry
  • Semi–automated measurements
  • Particle translation and rotation
  • Fabric