Advertisement

Granular Matter

, Volume 7, Issue 4, pp 191–197 | Cite as

Localized instability of a granular layer submitted to an ascending liquid flow

  • P. Rigord
  • A. Guarino
  • V. Vidal
  • J.-C. Géminard
Article

Abstract

Using a very simple experimental setup, we study the response of a thin layer of immersed granular material to an ascending liquid-flow; a pressure difference Δ P is imposed between the two horizontal free surfaces of a thin layer of glass beads, such that the liquid tends to flow upwards, and the resulting flow-rate v is measured. As generally observed in fluidized beds, the layer destabilizes when the pressure force exactly compensates the weight of the grains. At the free surface, one then observes the formation of a localized fountain of granular material the characteristic size of which is found to be proportional to the grain size and, surprizingly, independent of both the flow-rate and the thickness of the granular layer. Simple theoretical arguments account for the main experimental features.

Keywords

Fluidized beds Instability Flow localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dudukovic, M.P., Larachi, F., Mills, P.L.: Chem. Engng. Sci. 54, 1975 (1999); J.B. Joshi, Chem. Engng. Sci. 56, 5893 (2001)Google Scholar
  2. 2.
    Bagnold, R.A.: Motion of waves in shallow water. Interaction between waves and sand bottoms. In: The physics of sediment transport by wind and water C.R. Throne, R.C. MacAthur, J.B. Bradley (eds.), American Society of Civil Engineers, New-York, 1988Google Scholar
  3. 3.
    Persson, B.N.J.: In: Solid friction. Springer, New-York, 1998Google Scholar
  4. 4.
    Komatsu, T.S., Inagaki, S., Nakagawa, N., Nasuno, S.: Phys. Rev. Lett. 86, 1757–1760 (2001)Google Scholar
  5. 5.
    Geminard, J.-C., Losert, W., Gollub, J.P.: Phys. Rev. E 59, 5881 (1999)Google Scholar
  6. 6.
    Duran, J.: Comptes Rendus Physique 3, 217–227 (2002)Google Scholar
  7. 7.
    Caballero, L., Melo, F.: Phys. Rev. Lett. 93, 258001 (2004)Google Scholar
  8. 8.
    Derec, C., Senis, D., Talini, L., Allain, C.: Phys. Rev. E. 67, 062401 (2003)Google Scholar
  9. 9.
    Darcy, H.: In: Les fontaines publiques de la ville de Dijon. Dalmont, Paris, 1856Google Scholar
  10. 10.
    Wong, R.C.K.: Can. Geotech. J. 40, 95–106 (2003)Google Scholar
  11. 11.
    Geldart, D.: Gas Fluidisation Technology. John Wiley & Sons, 1986Google Scholar
  12. 12.
    Coulson, J.M., Richardson, J.F.: Chemical Engineering, Vol. 2, 4th edn., 1991Google Scholar
  13. 13.
    Kunii, D., Levenspiel, O.: Fluidisation Engineering, 2nd edn., 1991Google Scholar
  14. 14.
    Mathur, K.B., Epstein, N.: Spouted Beds. Academic Press, 1974Google Scholar
  15. 15.
    Carman, P.C.: In: Flow of gases through porous media. Butterworths, London, 1956Google Scholar
  16. 16.
    Cheng, N.-C., Law, A.W.K.: Powder Tech. 129, 156–160 (2003)Google Scholar
  17. 17.
    Mooney, J.: J. Colloid Sci. 6, 162–170 (1951)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Rigord
    • 1
  • A. Guarino
    • 2
  • V. Vidal
    • 3
    • 4
  • J.-C. Géminard
    • 1
    • 4
  1. 1.Laboratoire de PhysiqueEcole Normale Supérieure de Lyon, 46 Allée d'ItalieFrance
  2. 2.Université de la Polynésie FrançaiseTahitiFrançaise
  3. 3.Institut de Physique du Globe 75252 Paris cedex 05France
  4. 4.Nonlinear Physics LaboratoryUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations