Skip to main content
Log in

Mechanical and electrical behaviors of polymer particles. Experimental study of the contact area between two particles. Experimental validation of a numerical model

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract.

The present paper is devoted to the analysis of mechanical and electrical behaviors observed on particulate polymer granular materials. The constituting particles obtained these physical properties by coating the polymer spherical substrate with a conducting polymer: polypyrrole (PPy) which confers electrical conducting properties to the particle, while preserving its mechanical properties. Particle contacts dominate the behavior of the granular media and, consequently, size, morphology, roughness and plasticity of the particles play a crucial role in this behavior. Scanning electron microscope (SEM) and atomic force microscope (AFM) were used to study the surface state and the contact area between neighbors. An experimental set up, based on the measurement of the displacement of contacting particles subjected to a normal force and of the variation of the electrical resistance of the packing, allowed the study of both the mechanical and electrical behaviors of the particle system. The experimental results took into account the plastic deformation under varying loading and unloading conditions; they were consistent with theories of contact mechanics, thus validating the existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Troadec, J.P.: Thèse d’Etat, Université de Rennes I, France (1983)

  2. Giraud, G.: Thèse d’Etat, Université d’Aix-Marseille I, France (1980)

  3. Bonamy, D.: Thèse de 3éme cycle, Université de Paris XI, France (2001)

  4. Bideau, D.: Thèse d’Etat. Université de Rennes I, France, 1983

  5. Artz, E.: ‘‘The influence of an increasing particle coordination on the densification of spherical powders.’’ Acta Met. 30, 1883 (1982)

    Google Scholar 

  6. Fischmeister, H.F., Artz, E., Olsson, L.R.: ‘‘Particle deformation and sliding during compression of spherical powders: a study by quantitative metallurgy.’’ Powder Met. 4, 179 (1978)

  7. Wilkinson, D.S., Ashby, M.F.: ‘‘Pressure sintering by power law creep.’’ Acta Met. 23, 1277 (1975)

    Google Scholar 

  8. Vu-Quoc, L., Zhang, X., Lesburg, L.: ‘‘Normal and tangential force-displacement relations for frictional elastoplastic contact of spheres.’’ Int. J. Solids Struct. 38, 6455 (2001)

    Google Scholar 

  9. Vu-Quoc, L., Zhang, X.: ‘‘An elastoplastic contact force-displacement model in the normal direction: displacement-driven version.’’ Proc. Roy. Soc. London, Series A 455, 4013 (1999)

  10. Zhang, X., Vu-Quoc, L.: ‘‘A method to extract the mechanical properties of particles in collision based on a new elastoplastic normal force-displacement model.’’ Mech. Mat. 34(12), 779 (2002)

    Google Scholar 

  11. Vu-Quoc, L., Zhang, X., Lesburg, L.: ‘‘A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation.’’ ASME J. Appl. Mech. 67(2), 237 (2000)

    Google Scholar 

  12. Vu-Quoc, L., Zhang, X., Walton, O.R.: ‘‘A 3-D discrete element method for dry granular flows of ellipsoidal particles.’’ Appl. Mech. Eng. 187(3–4), 483 (2000)

    Google Scholar 

  13. Plantard, G., Papini, M.: ‘‘Radiative and electrical properties of granular materials: application to mixtures of insulating and conducting polymers.’’ J. Quant. Spectrosc. Rad. Transfer 74(3), 329 (2002)

  14. Plantard, G., Papini, M.: ‘‘Analysis of the radiative properties of insulating and conducting granular polymers and their mixtures.’’ Powder Technol. 128(2–3), 287 (2002)

    Google Scholar 

  15. Plantard, G.: Ph.D. thesis, Université d’Aix-Marseille I, France (2002)

  16. Vernitskaya, T.V., Efimov, O.N.: ‘‘Polypyrrole: a conducting polymer; its synthesis, properties and applications.’’ Russian Chem. Rev. 66(5), 443 (1997)

    Google Scholar 

  17. Planche, M.F.: Ph.D. thesis, Université de Grenoble I, France (1992)

  18. Lascelles, S.F., Armes, S.P.: ‘‘Synthesis and characterization of micrometre-sized, polypyrrole-coated polystyrene latexes.’’ J. Mater. Chem. 7(8), 1339 (1997)

    Google Scholar 

  19. Chaudhri, M.M., Huctchings, I.M., Makin, P.L.: ‘‘Plastic compression of spheres.’’ Philos. Mag. A 48(4), 493 (1984)

  20. Timothy, S.P., Pearson, J.M., Huctchings, I.M.: ‘‘The contact pressure distribution during plastic compression of lead spheres.’’ Int. J. Mech. Sci. 29(10–11), 713 (1987)

    Google Scholar 

  21. Kim, K.S., McMeeking, R.M., Johnson, K.L.: ‘‘Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact.’’ J. Mech. Phys. Solids. 46(2), 243 (1998)

    Google Scholar 

  22. Storakers, B.: ‘‘Local contact behavior of viscoplastic particles.’’ IUTAM, Symp. Mech. of Granular and Porous Materials, 1997, pp. 173

  23. Mesarovic, S.Dj., Fleck, N.A.: ‘‘Frictionless indentation of dissimilar elastic-plastic spheres.’’ Int. J. Solids Struct. 37, 7071 (2000)

    Google Scholar 

  24. Johnson, K.L: ‘‘Contact mechanics.’’ Cambridge Univ. Press, Cambridge (1985)

  25. Fischmeister, H.F., Artz, E.: ‘‘Densification of powders by particle deformation.’’ Powder Met. 2-, 82 (1983)

  26. Thornton, C., Ning, Z.: ‘‘A theoretical model for the stick/bounce behavior of adhesive, elastic-plastic spheres.’’ Powder Technol. 99, 154 (1998)

    Google Scholar 

  27. Holm, R.: ‘‘Electric contacts.’’ Springer Verlag, Berlin, 4th edition (2000)

  28. Boyer, L., Noel, S., Houze, F.: ‘‘Determination of the effective contact radius between a conducting sphere and a thin metallic film.’’ J. Phys. D: Appl. Phys. 21, 495 (1988)

    Google Scholar 

  29. Féchant, L.: ‘‘Le contact électrique: Phénomènes Physiques et Matériaux.’’ 2, Hermès, Paris (1996)

  30. Mindlin, R.D., Deresiewicz, H.: ‘‘Elastic spheres in contact under varying oblique forces.’’ ASME, J. Appl. Mechanics 20, 327 (1953)

    Google Scholar 

  31. Dobry, R., Petrakis, E., Seridi, A.: ‘‘General model for contact law between two rough spheres.’’ ASCE, J. Engineering Mechanics 117(6), 1365 (1991)

    Google Scholar 

  32. Brunner, J., Hammerschmid, H.: ‘‘Uber die elektr. Leitfähigkeit gepresster graphit-pulver. ‘‘Zeitschrift für Elektrochemie 40(2), 60 (1934)

    Google Scholar 

  33. Henninger, F.P.: ‘‘Widerstandsmessungen an bor und siliciumcarbid.’’ Annalen der Physik 5. Folge, 28(3), 245 (1937)

  34. Glicksmann, R., Morehouse, C.K.: ‘‘Resistivity study of various Leclanché cathode materials.’’ J. Electrochem. Soc. 103(3), 149 (1956)

    Google Scholar 

  35. Euler, K.J.: ‘‘The conductivity of compressed powders. A review,’’ J. Powder Sources 3, 117 (1978)

    Google Scholar 

  36. Euler, K.J.: ‘‘Elektrische Leitfähigkeit von pulvern unter druck.’’ Bull, Schweiz. ETV 63, 1498 (1972)

    Google Scholar 

  37. Euler, K.J.: ‘‘Elektrische Leitfähigkeit von braunsteinpulver unter druck,’’ Mettaloberflache 28(1), 15 (1974)

    Google Scholar 

  38. Euler, K.J.: ‘‘Leitfähigkeit von mischkomprimaten.’’ RTZ(B), 28(2), 45 (1976)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Plantard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plantard, G., Papini, M. Mechanical and electrical behaviors of polymer particles. Experimental study of the contact area between two particles. Experimental validation of a numerical model. Granular Matter 7, 1–12 (2005). https://doi.org/10.1007/s10035-004-0194-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-004-0194-6

Keywords

Navigation