Skip to main content
Log in

Application of a cellular automaton to simulations of granular flow in silos

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract.

A cellular automaton based on a gas model of hydrodynamics was used to calculate the kinematics of non-cohesive granular materials during confined flow in a mass flow and funnel flow model silo. In the model, collisions of particles were taken into account during granular flow. In addition, a simplified automaton was used wherein granular flow was assumed as an upward propagation of holes through a lattice composed of cells representing single particles. The advantages and disadvantages of both cellular automata were outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cambridge University Press (1998)

  2. Zhou, J.G.: Lattice Boltzman Methods, Springer Verlag (2004)

  3. Ulm, S.: Random processes and transformations. Proc. Int. Con. Math. 2, 264–275 (1952)

    Google Scholar 

  4. Litwiniszyn, J.: Application of the equation of stochastic processes to mechanics of loose bodies. Archives of Applied Mechanics 8(4), 393–411 (1956)

    Google Scholar 

  5. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505–1508 (1986)

    Google Scholar 

  6. Caram, H., Hong, D.C.: Random-walk approach to granular flows. Phys. Rev. Lett. 67, 828–831 (1991)

    Google Scholar 

  7. Fitt, A.D., Wilmort, P.: Cellular-automaton model for segregation of two-species granular flow. Phys. Rev. A 45(4), 2383 (1992)

    Google Scholar 

  8. Peng, G., Herrmann, H.J.: Density waves of granular flow in a pipe using lattice gas automata. Phys. Rev. 49(3), 1796–1799 (1994)

    Google Scholar 

  9. Fiske, T.J., Railkar, S.B., Kalyon, D.M.: Effects of segregation on the packing of spherical and non-spherical particles. Powder Technology 81, 57–64 (1994)

    Google Scholar 

  10. Sakaguchi, H., Murakami, A., Hasegawa, T., Shirai, A.: Connected lattice cellular-automaton particles: model for pattern formation in vibrating granular media. Soils and Foundations 36(1), 105–110 (1996)

    Google Scholar 

  11. Hemmingson, J., Herrmann, H.J., Roux, S.: Vectorial Cellular automaton for the stress in granular media. J. Physique 1(7), 291–302 (1997)

    Google Scholar 

  12. Katsura, N., Shimosaka, A., Shirakawa, Y., Hidaka, J.: Simulation for flow behaviour of vibrating granular materials using cellular automata. Powders and Grains (ed. Kishino), Swets and Zeitlinger, Lisse, 2001, pp. 525–528

  13. Goles, E., Gonzales, G., Herrmann, H., Martinez, S.: Simple lattice model with inertia for sand piles, Granular Matter 1, 137–140 (1998)

    Google Scholar 

  14. Murakami, A., Sakaguchi, H., Takasuka, T., Fuji, H.: Study of microtopology and its evolution in granular materials using a cellular automata model. Powders and Grains (ed. Kishino), Swets and Zeitlinger, Lisse, 2001, pp. 33–36

  15. Kozicki, J., Tejchman, J.: Application of a cellular automata model to granular flow. Task Quarterly, Gdansk University of Technology 6(3), 429–436 (2002)

    Google Scholar 

  16. Baxter, G.W., Behringer, R.P., Fagert, T., Johnson, G.A.: Pattern formation and time-dependence in flowing sand. In: Joseph, D.D., Schaeffer, D.G. (eds.), Two Phase Flows and Waves Springer Verlag, New York, 1990, pp. 1–29

  17. Gutt, G.M., Haff, P.K.: An automaton model of granular materials. Proc. 5th Distributed Memory computing conference, 1, IEEE Computer society Press, 1990, pp. 55–556

  18. Baxter, G.W., Behringer, R.P.: Cellular automata models for the flow of granular materials. Physica D 51, 465–471 (1991)

    Google Scholar 

  19. Savage, S.B.: Some aspects of confined granular flows. Proc. Int. Con. on Silos: Silos – Forschung and Praxis, University of Karlsruhe, 1992, pp. 111–121

  20. Savage, S.B.: Disorder, diffusion and structure formation in granular flows. In: Bideau, D., Hansen, A. (eds.), Disorder and Granular Media, North-Holland, 1993, pp. 255–185

  21. Osinov, V.A.: A model of a discrete stochastic medium for the problems of loose material flow. Continuum Mechanics and Thermodynamics 6, 51–60 (1994)

    Google Scholar 

  22. Deserable, D., Martinez, J.: Using a cellular automaton for the simulation of flow of granular materials. In: Thornton (ed.) Powder and Grains Balkema, 1993, pp. 345–350

  23. Martinez, J., Masson, S., Deserable, D.: Flow patterns and velocity profiles during silo discharge simulation with a lattice grain model, Proc. Intern. Conference on Silos, Partec 95, Nürnberg, 1995, pp. 367–379

  24. Deserable, D., Masson, S., Martinez, J.: Influence of exclusion rules on flow pattern in a lattice-grain model. In: Kishino (ed.), Powders and Grains Swets and Zeitlinger, Lisse, 2001, pp. 421–424

  25. Kozicki, J., Tejchman, J.: Simulations of granular flow in silos with a cellular automata model. The International Journal of Storing, Handling and Processing Powder (Powder Handling and Processing), 13(3), 267–275 (2001)

  26. Tejchman, J., Klisinski, M.: FE-studies on rapid flow of bulk solids in silos. Granular Matter 3(4), 215–231 (2001)

    Google Scholar 

  27. Silo Standard: Lastannahmen für Bauten, DIN 1055, Teil 6, 1987

  28. Pieper, K., Wagner, K.: Der Einfluβ verschiedener Auslaufarten auf die Seitedrücke in Silozellen. Aufbereitungstechnik 10, 542–546 (1968)

    Google Scholar 

  29. Safarian, S.S., Harris, E.C.: Design Construction of Silos and Bunkers. Von Nostrand Reinhold Company. (1985)

  30. Hampe, E.: Silos. VEB Verlag für Bauwesen, Berlin (1987)

  31. Schwedes, J.: Lagern und Flieβen von Schüttgütern. Hochschulkurs. Internal Report, University of Braunschweig (1999)

  32. Alonso, J.J., Herrmann, H.J.: Shape of the tail of a two-Dimensional sandpile. Physical Review Letters 76(26), 4911–4914 (1996)

    Google Scholar 

  33. Cutress, J., Pulfer, R.F.: X-ray investigations of flowing powders. Powder Technology, 1967, pp. 212–220

  34. Bransby, P.L., Blair-Fish, P.M., James, R.G.: An investigation of the flow of granular materials. Powder Technology 8, 197–206 (1973)

    Google Scholar 

  35. Drescher, A., Cousens, T.W., Bransby, P.L.: Kinematics of the mass flow of granular material through a plane hopper. Geotechnique 28(1), 27–42 (1978)

    Google Scholar 

  36. Michalowski, R.L.: Flow of granular material through a plane hopper. Powder Technology 39, 29–40 (1984)

    Google Scholar 

  37. Michalowski, R.L.: Strain localization and periodic fluctuations in granular flow processes from hoppers. Geotechnique 40(3), 389–403 (1990)

    Google Scholar 

  38. Tejchman, J.: Shear localization and autogeneous dynamic effects in granular bodies. Publication Series of the Institute for Rock and Soil Mechanics, Karlsruhe University 140, 1–353 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tejchman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozicki, J., Tejchman, J. Application of a cellular automaton to simulations of granular flow in silos. Granular Matter 7, 45–54 (2005). https://doi.org/10.1007/s10035-004-0190-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-004-0190-x

Keywords

Navigation