Skip to main content
Log in

The effect of contact torques on porosity of cohesive powders

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract.

The porosity of uniaxially compacted cohesive powders depends on the applied stress (including gravity). The case, where these stresses are weak, is considered. The compaction results in a porosity which is a function of sliding, rolling and torsion friction. By contact dynamics simulations it is shown that the influences of contact torques (static rolling and torsion friction) on the porosity are significant and approximately additive. The relevance for nano-powder pressure sintering is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cates, M.E., Wittmer, J.P., Bouchaud, J.P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841 (1998)

    Google Scholar 

  2. Silbert, L.E., Ertas, D., Grest, G.S., Halsey, T.C., Levine, D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65, 031304 (2002)

    Google Scholar 

  3. Makse, H.A., Brujic, J., Edwards, S.F.: Statistical mechanics of jammed matter. to appear in “The Physics of Granular Media”, Hinrichsen, H., Wolf, D.E. (eds.) (Wiley-VCH, Weinheim, 2004)

  4. Knight, J.B., Fandrich, C.G., Lau, C.N., Jaeger, H.M., Nagel, S.R.: Density relaxation in a vibrated granular material. Phys. Rev. E 51, 3957 (1995)

    Google Scholar 

  5. Caglioti, E., Loreto, V., Herrmann, H.J., Nicodemi, M.: A “tetris-like” model for the compaction of dry granular media. Phys. Rev. Lett. 79, 1575 (1997)

    Google Scholar 

  6. Kadau, D., Bartels, G., Brendel, L., Wolf, D.E.: Pore stabilization in cohesive granular systems. Phase Trans. 76, (4–5), 315–331 (2003)

    Google Scholar 

  7. Brilliantov, N.V., Pöschel, T.: Rolling friction of a viscous sphere on a hard plane. Europhys. Lett 42, 511 (1998)

    Google Scholar 

  8. Dintwa, E., van Zeebroeck, M., Tijskens, E., Ramon, H.: Torsional stiffness of viscoelastic spheres in contact. Eur. Phys. J. B 39(1), 77–85 (2004)

    Google Scholar 

  9. Farkas, Z., Bartels, G., Unger, T., Wolf, D.E.: Frictional coupling between sliding and spinning motion. Phys. Rev. Lett. 90, 248302 (2003)

    Google Scholar 

  10. Hahn, H.: Unique features and properties of nanostructured materials. Advanced Engineering Materials 5(5), 277 (2003)

    Google Scholar 

  11. Groza, J.R.: Nanosintering. Nanostruc. Mat. 12, 987–992 (1999)

  12. Kadau, D., Bartels, G., Brendel, L., Wolf, D.E.: Contact dynamics simulations of compacting cohesive granular systems. Comp. Phys. Commun. 147, (1–2), 190–193 (2002)

    Google Scholar 

  13. Voyenli, K., Eriksen, E.: On the motion of an ice hockey puck. American Journal of Physics 53, 1149 (1985)

    Google Scholar 

  14. Goyal, S., Ruina, A., Papadopoulos, J.: Planar sliding with dry friction. part 2. dynamics of motion. Wear 143, 331 (1991)

    Google Scholar 

  15. Moreau, J.J., Panagiotopoulos, P.D. (eds.): volume 302 of CISM Courses and Lectures. Springer-Verlag, Wien, New York (1988)

  16. Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur J Mech, A/Solids 13(4) 93–114 (1994)

    Google Scholar 

  17. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Engrg. 177, 235–257 (1999)

    Google Scholar 

  18. Unger, T., Kertész, J.: The contact dynamics method for granular media. In: Modeling of Complex Systems, pp. 116–138, Melville, New York, (2003). American Institute of Physics. cond-mat/0211696

  19. Unger, T., Brendel, L., Wolf, D.E., Kertész, J.: Elastic behavior in contact dynamics of rigid particles. Phys. Rev. E 65, (2002)

  20. Kadau, D.: Porosität in kohäsiven granularen Pulvern und Nano-Pulvern. PhD thesis, University Duisburg-Essen (2003)

  21. Brendel, L., Unger, T., Wolf, D.E.: Contact dynamics for beginners. To appear in “The Physics of Granular Media”, Hinrichsen, H., Wolf, D.E. (eds.) (Wiley-VCH, Weinheim, 2004)

  22. Jullien, R., Meakin, P.: Simple three-dimensional models for ballistic deposition with restructuring. Europhys. Lett. 4(12), 1385–1390 (1987)

    Google Scholar 

  23. Meakin, P., Jullien, R.: Ballistic deposition with sticky and non-sticky particles. Physica A 175(2), 211–221 (1991)

    Google Scholar 

  24. Krafczyk, M., Lehmann, P., Filippova, O., Hänel, D., Lantermann, U.: Lattice boltzmann simulations of complex multiphase flows. In: Multifield Problems, pp. 50–57, Berlin, (2000), Springer

  25. Filippova, O., Hänel, D.: Lattice boltzmann simulations of gas-particle flow in filters. Comp. and Fluids 26(7), 697–712 (1997)

    Google Scholar 

  26. Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48, 339 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Bartels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, G., Unger, T., Kadau, D. et al. The effect of contact torques on porosity of cohesive powders. Granular Matter 7, 139–143 (2005). https://doi.org/10.1007/s10035-004-0184-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-004-0184-8

Keywords

Navigation