Skip to main content
Log in

Constitutive modelling of snow as a cohesive-granular material

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Snow material is an example of a geomaterial whose micro-structure plays a significant role in its overall constitutive behaviour. A snow sample can be regarded at the microscopic level as a cohesive granular assembly; the behaviour of ice bonds at the interface of each pair of grains in contact, which has a substantial influence on the overall behaviour, can be expressed in a straightforward manner. This paper derives the constitutive behaviour of the snowpack on the macroscopic level from a microscopic-scale description, taking into account a statistical description of the fabrics. In this approach, the location of each particle does not play a role, but the probability of a grain bond existing in a given direction is investigated. Modelling the creation or the failure of contacts in given directions makes it possible to analyse how the probability density of having contacts in these directions evolves. As an example, the relevance of this constitutive approach is examined using the standard creeping and triaxial tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Armstrong, An analysis of compressive strain in adjacent temperature-gradient & equi-temperature layers in natural snow cover, J. Glaciol. 26(94) (1980), pp. 283–289

    Google Scholar 

  2. N. Azuma, A flow law for anisotropic ice and its application to ice sheets, Earth Planet. Sci. Lett. 28(3–4) (1994), pp. 601–614

    Google Scholar 

  3. H. Bader & et al. (1939) Der schnee und seine metamorphose, USA Snow Ice and Permafrost Research, available from the National Technical Information Service

  4. H. Bader, The physics and mechanics of snow as a material, USA Cold Regions Research and Engineering Laboratory, Monograph II-B (1962) p. 79

  5. J. P. Bardet, Introduction to computational granular mechanics, In: Behaviour of granular materials, B. Cambou (Ed.), (Springer Wien, New York, 1998), pp. 99–169

  6. P. Bartelt & M. Christen, A computational procedure for instationary temperature-dependent snow creep, Submitted 2001

  7. Z. Bazant & P. Prat, Microplane model for brittle-plastic material, ASCE J. Engin. Mechan. 114(10) (1988), pp. 1673–1702

    Google Scholar 

  8. R. L. Brown, Perspective on mechanical properties of snow, In: Proceedings of the 1st (International Conference on Snow Engineering, California, July 1988, USA Cold Regions Research and Engineering laboratory, Special Report, 1989), pp. 502–503

  9. R. L. Brown & M. Q. Edens, Changes in the microstructure of snow under large deformations, J. Glaciol. 37(126) (1991a), pp. 193–202

  10. R. L. Brown & M. Q. Edens, On the relationship between neck length and bond radius during compression of snow, J. Glaciol 37(126) (1991b), pp. 203–208

  11. D. Caillerie, Evolution quasistatique d’un milieu granulaire, loi incrémentale par homogénéisation, In: Des matériaux aux ouvrages, (Hermès, Paris 1995), pp. 53–80

  12. F. Calvetti, G. Combe & J. Lanier, Experimental micro-mechanical analysis of a 2D granular material, relation between structure evolution and loading path. Mechanics of Cohesive-Frictional Materials 2 (1997), pp. 121–163

    Google Scholar 

  13. B. Cambou, From global to local variables in granular materials. In: Powders & Grains, Thorton (Eds.), (Balkema, Rotterdam, 1993), pp. 73–86

  14. B. Cambou, P. Dubujet, F. Emeriault & F. Sidoroff, Homogenization for granular materials, Eur. J. Solids, A/Solids 14(2) (1995), pp. 255–276

    Google Scholar 

  15. B. Cambou, M. Chaze & F. Dedecker, Change of scale in granular materials, Eur. J. Mech. A/Solids 19(Elsevier Ed.) (2000), pp. 999–1014

  16. O. Castelnau, Modélisation du comportement mécanique de la glace poly-cristalline par une approche auto-cohérente, application au développement de textures dans les glaces des calottes polaires, (Thesis, Univ. Joseph Fourier, Grenoble, France, 1996)

  17. C. S. Chang, A. Misra & S. Sundaram, Micro-mechanical modelling of cemented sands under low amplitude oscillations, Geotechnique 40(2) (1990), pp. 251–263

    Google Scholar 

  18. C. S. Chang, Micromechanical modelling of deformation and failure for granulates with frictional contacts, Mechanics of Materials 16 (1992), pp. 13–24

    Google Scholar 

  19. C. S. Chang & C. L. Liao, estimates of elastic modulus for media of randomly packed granulates, Appl. Mechanics Rev. 47 (1994), pp. 197–206

    Google Scholar 

  20. J. Christoffersen, M. M. Mehrabadi & Nemat-S. Nasser, A micro-mechanical description of granular material behavior, J. Appl. Mechanics 48 (1981), pp. 339–344

    Google Scholar 

  21. P. A. Cundall & D. H. Roger, Numerical modelling of discontinua, Engineering computations 9 (1992), pp. 101–113

  22. De V. Montmollin, Shear tests on snow explained by fast metamorphism, J. Glaciol. 28(98) (1982), pp. 187–198

  23. F. Desrues, Darve, F. E. Flavigny, J. P. Navarre & A. Taillefer, An incremental formulation of constitutive equations for deposited snow, J. Glaciol. 25(92) (1980), pp. 289–307

  24. J. M. Duva & P. D. Crow, Analysis of consolidation of reinforced materials by power-law creep, Mech. Mater. 17(1) (1994), pp. 25–32

    Google Scholar 

  25. W. G. Field, Toward the statistical definition of a granular mass, In: Proceeding of 4th Austria-New Zealand Conf. on soil mechanics and foundation engineering (1963), pp. 143–148

  26. M. Fukue, Mechanical performance of snow under loading, (Tokyo, Japan, Tokai University Press, 1979)

  27. O. Gagliardini & J. Meyssonnier, Flow simulation of a firn-covered cold glacier, Ann. Glaciol. 24 (1997), pp. 242–248

    Google Scholar 

  28. O. Gagliardini & J. Meyssonnier, Analytical derivations for the behavior and fabric evolution of a linear orthotropic ice polycrystal, J. Geophys. Res. 104 (1999), pp. 17, 797–17, 809

  29. G. Gödert & K. Hutter, Induced anisotropy in large ice shields, theory and its homogenization, Continuum Mech. Thermodyn. 10 (1998), pp. 293–318

    Google Scholar 

  30. A. C. Hansen & R. L. Brown, A new constitutive theory for snow based on a micromechanical approach, In: Avalanche movement and effects, Proceedings of the Davos Symposium, IAHS Publication 162 (1987), pp. 87– 104

  31. A. C. Hansen & R. L. Brown, An internal state variable approach to constitutive theories for granular materials with snow as an example, Mechanics of Materials 7 (1988), pp. 109–119

    Google Scholar 

  32. R. Hill, The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids 15 (1967), pp. 79–95

    Google Scholar 

  33. F. Kern, Calcul des efforts dans les filets paravalanches, Compte rendu de la seconde deuxième rencontre internationale sur la neige et les avalanches, ANENA, Grenoble (1978), pp. 241–250

  34. I. V. Kragelski & A. A. Shakhov, Change of the mechanical properties of a snow surface as a function of time, In: The physico-mechanical properties of snow and their application in the construction of airfields and roads, (Academy of Sciences, Moscow. Translation by Bureau of Yards and Docks, Washington, 1949), pp. 6–9

  35. P. R. Kry, The relationship between the visco-elastic and structural properties of fine-grained snow, J. Glaciol. 14(72) (1975), pp. 467–477

    Google Scholar 

  36. W. F. Lawrence, The acoustic emission response of snow, J. Glaciol. 26(94) (1980), pp. 209–216

    Google Scholar 

  37. J. Lemaitre & J. L. Chaboche, Mécanique des matériaux solides, (Ed. Dunod, Paris, 1988), pp. 163–249

  38. L. Lliboutry & P. Duval, Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies, Ann. Glaciol. 3(2) (1985), pp. 207–224

    Google Scholar 

  39. L. Lliboutry, Anisotropic, transversely isotropic non linear viscosity of rock ice and rheological parameters inferred by homogenization, Int. J. Plast. 9 (1993), pp. 619–632

    Google Scholar 

  40. S. A. Magnier & Donzé, F.V., Numerical simulations of impacts using a discrete element method, Mech. Cohes-Frict. Mater. 3 (1998), pp. 257–276

  41. S. Margreth, Snow pressure measurements on snow net systems, Actes de colloque, Chamonix (1995), pp. 241–248

  42. M. Mellor, A review of basic snow mechanics, IAHS-AISH, Publication 114, Snow Mechanics Symposium, Grindelwald (1975), pp. 251–291

  43. F. Nicot, M. Gay & J. M. Tacnet, Interaction between a snow mantel and a flexible structure, a new method to design avalanche nets, Cold Regions Science and Technology 34 (2002), pp. 67–84

    Google Scholar 

  44. F. Nicot, Constitutive modelling of a snowcover with a change in scale, Eur. J. Mechanics, (A/Solids) 22-3 (2003a), pp. 325–340

  45. F. Nicot, From a constitutive modelling of a snowcover to the design of flexible structures. Part II, Some numerical aspects, Int. J. Solids and Structures, 41 (2004), pp. 3339–3352

    Google Scholar 

  46. F. Nicot, M. Boutillier & O. Gagliardini, Modelling of a snowpack in interaction with a flexible structure using a coupled Lagrangian-Discrete approach, Int. J. Numer. Anal. Meth. Geomech. 27 (2003c), pp. 259–274

  47. P. Pimienta, Etude du comportement mécanique des glaces poly-cristallines aux faibles contraintes, application aux glaces des calottes polaires, (Thesis, Univ. Sci. Tech. et Med. de Grenoble, France, 1987)

  48. F. Radjai, D. Wolf, M. Jean & J. J. Moreau, Bimodal character of stress transmission in granular packing, Phys. Rev. Lett. 80(1) (1998), pp. 61–64

    Google Scholar 

  49. F. Radjai, S. Roux & J. J. Moreau, Contact forces in a granular packing, Chaos 9(3) (1999), pp. 544–550

    Google Scholar 

  50. B. Salm, On the rheological behaviour of snow under high stresses, Contributions from Institute of Low Temperature Science, Hokkaido University, Series A 23 (1971), pp. 1–43

  51. B. Salm, A constitutive equation for creeping snow, IAHS-AISH, Publication 114, Snow mechanics Symposium, Grindelwald, (1975), pp. 222–235

  52. B. Salm, Snow forces, J. Glaciol. 19(81) (1977), pp. 67–100

  53. L. H. Shapiro et al., Snow mechanics, review of the state of knowledge and applications, CRREL Report 97(3) (1997), pp. 1–34

  54. E. Yanagisawa, Influence of void ratio and stress condition on the dynamic shear modulus of granular media. In Advances in the mechanics and the flow of granular materials, Shahinpoor (Ed.), (Gulf Publishing, Houston, 1983), pp. 947–960

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Nicot.

Additional information

RNVO Group: French connection on Natural Hazards and Vulnerability of Structures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicot, F. Constitutive modelling of snow as a cohesive-granular material. GM 6, 47–60 (2004). https://doi.org/10.1007/s10035-004-0159-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-004-0159-9

Keywords

Navigation