Abstract
Under mechanical deformation, most materials exhibit both elastic and fluid (or plastic) responses. No existing formalism derived from microscopic principles encompasses both their fluid-like and solid-like aspects. We define the statistical texture tensor to quantify the intuitive notion of stored deformation. This tensor links microscopic and macroscopic descriptions of the material, and extends the definition of elastic strain.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
C. Truesdell & W. Noll, The Non-Linear Field Theories of Mechanics, in Handbuch des Physik, vol III/3, S. Flügge ed., Springer-Verlag, Heidelberg, 1965
S. Alexander, Phys. Reports 296 (1998), p. 65
L. Landau & E. M. Lifschitz, In Theory of Elasticity, 3rd Edition, Reed Educational and Professional Publishing Ltd. 1986
L. E. Malvern, In Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Inc. New Jersey, 1969
A. Green & W. Zerna, In Theoretical Elasticity, 2nd edition (Clarendon Press, Oxford) 1968; A. Green and J. Adkins, in Large Elastic Deformations, 2nd edition (Clarendon Press, Oxford) 1970
I. Goldhirsch & C. Goldenberg, On the Microscopic Foundations of Elasticity. Submitted to Eur. Phys. J., cond-mat/0203360 (2002)
G. Durand, J. Weiss & F. Graner, Measure of the deformation tensor of polar ice from the microstructure: application on the Dome Concordia ice core. In preparation
D. A. Reinelt & A. M. Kraynik, J. Rheol. 44 (2000), p. 453
In equilibrium, with no external forces even at the boundaries, the stress is uniformly zero. Because we consider isotropic sites, we expect that the lack of force implies statistical isotropy on a mesoscopic scale. A prestressed reference state differs qualitatively (see [2] pp. 112-126).
S. Alesker, GAFA Geom. Funct. Anal. 8 (1998), p. 402; Geometriae dedicata 74 (1999), p. 241; Ann. of Math. 149 (1999), p. 977
H. Muller, Rend. Circ. Mat. Palermo 2 (1953), p. 1
R. Duda & P. Hart, In Pattern Classification and Scene Analysis (J. Wiley and Sons) 1973, pp. 364–366
P.-G. De Gennes & J. Prost, In The Physics of Liquid Crystals, 2nd edition (Oxford University Press, Oxford) 1998
F. Volino, Ann. Phys. Fr. 22 (1997), p. 1 (in French)
P.-G. De Gennes, In On Rice and Snow, Nishina Memorial Lecture (1998)
Y. Jiang, P. J. Swart, A. Saxena, M. Asipauskas & J. A. Glazier, Phys. Rev. E 59 (1999), p. 5819
S. Khan & R. Armstrong, J. Non-Newtonian Fluid Mech 22 (1986), p. 1; 25 (1987), p. 61
\(\stackrel{\vrule height.4pt width3.5mm}{\overline{M}}\) distinguishes the anisotropy of rank two tensors (``optical anisotropy''). For instance, \(\stackrel{\vrule height.4pt width3.5mm}{\overline{ M}}\) distinguishes between birefrigent and non-birefringent networks. In an ``optically'' isotropic state, \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}}\) has two identical eigenvalues and reduces to a scalar: \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}}(\vec{R})=M(\vec{ R})\stackrel{\vrule height.4pt width1.68mm}{\overline{I}}_{d}\), where \(\stackrel{\vrule height.4pt width1.68mm}{\overline{I}}_{d}\) is the identity tensor in d dimensions. Since the trace of \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}} \) is \(\left\langle ℓ _{i}ℓ _{i}\right\rangle =\left\langle ℓ ^{2}\right\rangle \), then \(M=\left\langle ℓ ^{2}\right\rangle /d\). Note, however, that \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}}\) does not distinguish the anisotropy of rank four tensors (``mechanical anisotropy''): for instance, \(\stackrel{\vrule height.4pt width3.48mm}{ \overline{M}}\) does not necessarily distinguish between crystals and glasses.
C. Massonet & S. Cescotto, in Mécanique des Matériaux (in French) (Bibliothèque des Universités, De Boeck, Bruxelles) 1994, pp. 29–31
G. Porte, J.-F. Berret & J. Harden, J. Phys. II France 7 (1997), p. 459
M. Asipauskas, M. Aubouy, Y. Jiang, F. Graner & J. A. Glazier, A texture tensor to quantify deformations: the Example of Two-Dimensional Flowing Foams. Companion paper, Granular Matter, 5 (2003), pp. 71–74
Author information
Authors and Affiliations
Additional information
U.M.R. n° 5819: CEA, CNRS and Univ. Joseph-Fourier
U.M.R. n° 5588: CNRS and Univ. Joseph-Fourier Address for correspondence: graner@ujf-grenoble.fr Fax: (+33) 4 76 63 54 95, BP 87, 38402
We thank M. Asipauskas, S. Courty, B. Dollet, F. Elias, S. Ifadir, E. Janiaud and G. Porte for discussions. YJ is supported by the US DOE under contract W-7405-ENG-36. JAG acknowledges support from NSF, DOE and NASA contracts NSF-DMR-0089162, DOE-DE-FG0299ER45785 and NASA-NAG3-2366, the French Ministére de l'Enseignement Supérieur, and hospitality at the LSP.
Rights and permissions
About this article
Cite this article
Aubouy, M., Jiang, Y., Glazier, J. et al. A texture tensor to quantify deformations. GM 5, 67–70 (2003). https://doi.org/10.1007/s10035-003-0126-x
Received:
Issue Date:
DOI: https://doi.org/10.1007/s10035-003-0126-x
