Skip to main content
Log in

A texture tensor to quantify deformations

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Under mechanical deformation, most materials exhibit both elastic and fluid (or plastic) responses. No existing formalism derived from microscopic principles encompasses both their fluid-like and solid-like aspects. We define the statistical texture tensor to quantify the intuitive notion of stored deformation. This tensor links microscopic and macroscopic descriptions of the material, and extends the definition of elastic strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. C. Truesdell & W. Noll, The Non-Linear Field Theories of Mechanics, in Handbuch des Physik, vol III/3, S. Flügge ed., Springer-Verlag, Heidelberg, 1965

  2. S. Alexander, Phys. Reports 296 (1998), p. 65

  3. L. Landau & E. M. Lifschitz, In Theory of Elasticity, 3rd Edition, Reed Educational and Professional Publishing Ltd. 1986

  4. L. E. Malvern, In Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Inc. New Jersey, 1969

  5. A. Green & W. Zerna, In Theoretical Elasticity, 2nd edition (Clarendon Press, Oxford) 1968; A. Green and J. Adkins, in Large Elastic Deformations, 2nd edition (Clarendon Press, Oxford) 1970

  6. I. Goldhirsch & C. Goldenberg, On the Microscopic Foundations of Elasticity. Submitted to Eur. Phys. J., cond-mat/0203360 (2002)

  7. G. Durand, J. Weiss & F. Graner, Measure of the deformation tensor of polar ice from the microstructure: application on the Dome Concordia ice core. In preparation

  8. D. A. Reinelt & A. M. Kraynik, J. Rheol. 44 (2000), p. 453

    Google Scholar 

  9. In equilibrium, with no external forces even at the boundaries, the stress is uniformly zero. Because we consider isotropic sites, we expect that the lack of force implies statistical isotropy on a mesoscopic scale. A prestressed reference state differs qualitatively (see [2] pp. 112-126).

  10. S. Alesker, GAFA Geom. Funct. Anal. 8 (1998), p. 402; Geometriae dedicata 74 (1999), p. 241; Ann. of Math. 149 (1999), p. 977

  11. H. Muller, Rend. Circ. Mat. Palermo 2 (1953), p. 1

  12. R. Duda & P. Hart, In Pattern Classification and Scene Analysis (J. Wiley and Sons) 1973, pp. 364–366

  13. P.-G. De Gennes & J. Prost, In The Physics of Liquid Crystals, 2nd edition (Oxford University Press, Oxford) 1998

  14. F. Volino, Ann. Phys. Fr. 22 (1997), p. 1 (in French)

  15. P.-G. De Gennes, In On Rice and Snow, Nishina Memorial Lecture (1998)

  16. Y. Jiang, P. J. Swart, A. Saxena, M. Asipauskas & J. A. Glazier, Phys. Rev. E 59 (1999), p. 5819

    Google Scholar 

  17. S. Khan & R. Armstrong, J. Non-Newtonian Fluid Mech 22 (1986), p. 1; 25 (1987), p. 61

  18. \(\stackrel{\vrule height.4pt width3.5mm}{\overline{M}}\) distinguishes the anisotropy of rank two tensors (``optical anisotropy''). For instance, \(\stackrel{\vrule height.4pt width3.5mm}{\overline{ M}}\) distinguishes between birefrigent and non-birefringent networks. In an ``optically'' isotropic state, \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}}\) has two identical eigenvalues and reduces to a scalar: \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}}(\vec{R})=M(\vec{ R})\stackrel{\vrule height.4pt width1.68mm}{\overline{I}}_{d}\), where \(\stackrel{\vrule height.4pt width1.68mm}{\overline{I}}_{d}\) is the identity tensor in d dimensions. Since the trace of \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}} \) is \(\left\langle ℓ _{i}ℓ _{i}\right\rangle =\left\langle ℓ ^{2}\right\rangle \), then \(M=\left\langle ℓ ^{2}\right\rangle /d\). Note, however, that \(\stackrel{\vrule height.4pt width3.48mm}{\overline{M}}\) does not distinguish the anisotropy of rank four tensors (``mechanical anisotropy''): for instance, \(\stackrel{\vrule height.4pt width3.48mm}{ \overline{M}}\) does not necessarily distinguish between crystals and glasses.

  19. C. Massonet & S. Cescotto, in Mécanique des Matériaux (in French) (Bibliothèque des Universités, De Boeck, Bruxelles) 1994, pp. 29–31

  20. G. Porte, J.-F. Berret & J. Harden, J. Phys. II France 7 (1997), p. 459

    Google Scholar 

  21. M. Asipauskas, M. Aubouy, Y. Jiang, F. Graner & J. A. Glazier, A texture tensor to quantify deformations: the Example of Two-Dimensional Flowing Foams. Companion paper, Granular Matter, 5 (2003), pp. 71–74

Download references

Author information

Authors and Affiliations

Authors

Additional information

U.M.R. n° 5819: CEA, CNRS and Univ. Joseph-Fourier

U.M.R. n° 5588: CNRS and Univ. Joseph-Fourier Address for correspondence: graner@ujf-grenoble.fr Fax: (+33) 4 76 63 54 95, BP 87, 38402

We thank M. Asipauskas, S. Courty, B. Dollet, F. Elias, S. Ifadir, E. Janiaud and G. Porte for discussions. YJ is supported by the US DOE under contract W-7405-ENG-36. JAG acknowledges support from NSF, DOE and NASA contracts NSF-DMR-0089162, DOE-DE-FG0299ER45785 and NASA-NAG3-2366, the French Ministére de l'Enseignement Supérieur, and hospitality at the LSP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubouy, M., Jiang, Y., Glazier, J. et al. A texture tensor to quantify deformations. GM 5, 67–70 (2003). https://doi.org/10.1007/s10035-003-0126-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-003-0126-x

Keywords.

Navigation