Skip to main content
Log in

Static and Dynamic Pull-In Instability of Nano-Beams Resting on Elastic Foundation Based on the Nonlocal Elasticity Theory

  • Original Article
  • Published:
Chinese Journal of Mechanical Engineering Submit manuscript

Abstract

This paper provides the static and dynamic pull-in behavior of nano-beams resting on the elastic foundation based on the nonlocal theory which is able to capture the size effects for structures in micron and sub-micron scales. For this purpose, the governing equation of motion and the boundary conditions are driven using a variational approach. This formulation includes the influences of fringing field and intermolecular forces such as Casimir and van der Waals forces. The differential quadrature (DQ) method is employed as a high-order approximation to discretize the governing nonlinear differential equation, yielding more accurate results with a considerably smaller number of grid points. In addition, a powerful analytical method called parameter expansion method (PEM) is utilized to compute the dynamic solution and frequency-amplitude relationship. It is illustrated that the first two terms in series expansions are sufficient to produce an acceptable solution of the mentioned structure. Finally, the effects of basic parameters on static and dynamic pull-in instability and natural frequency are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Faris WF, Abdel-Rahman EM, Nayfeh AH. Mechanical behavior of an electro statically actuated micro pump. Proc. 43rd AIAA/ASME/ASCE/AHS/ASC, Structures, Structural Dynamics, and Materials Conference, AIAA, 2002, 1003.

  2. Zhang XM, Chau FS, Quan C, Lam YL, Liu AQ. A study of the static characteristics of a torsional micromirror. Sensors and Actuators A: Physical Journal, 2001, 90(2): 73–81.

  3. Zhao X, Abdel-Rahman EM, Nayfeh AH. A reduced-order model for electrically actuated micro plates. Micro mechanics and Micro engineering Journal, 2004, 14: 900–906.

  4. Tilmans HA, Legtenberg R. Electro statically driven vacuum-encapsulated poly silicon resonators: part II. Theory and performance. Sensors and Actuators A, 1994, 45: 67–84.

  5. Ghalambaz, M., Ghalambaz, M., Edalatifar, M. Nonlinear oscillation of nanoelectro-mechanical resonators using energy balance method: considering the size effect and the van der Waals force, Appl Nanosci, 2016, DOI 10.1007/s13204-015-0445-3.

  6. Parsediya, D.K., Singh, J., Kankar, P.K. Variable width based stepped MEMS cantilevers for micro or pico level biosensing and effective switching, Journal of Mechanical Science and Technology, 2015, 29(11): 4823–4832.

  7. Shoaib, M., Hisham, N., Basheer, N., Tariq, M. Frequency and displacement analysis of electrostatic cantilever based MEMS sensor, Analog Integr Circ Sig Process, 2016, DOI 10.1007/s10470-016-0695-3.

  8. Canadija, M, Barretta, R, Marotti de Sciarra, F. On Functionally Graded Timoshenko Nonisothermal Nanobeams. Composite Structures, 2016, 135: 286–296.

  9. Barretta R, Feo, L, Luciano, R. Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Composites: Part B, 2015, 72: 217–222.

  10. Barretta, R, Feo, L, Luciano, R, Marotti de Sciarra, F. Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams. Composite Structures, 2015, 129: 80–89.

  11. Sedighi, H.M., Keivani, M., Abadyan, M. Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: Corrections due to finite conductivity, surface energy and nonlocal effect. Composites Part B Engineering, 2015, 83: 117–133. DOI:10.1016/j.compositesb.2015.08.029.

  12. Barretta, R, Feo, L, Luciano, R, Marotti de Sciarra, F. A gradient Eringen model for functionally graded nanorods. Composite Structures, 2015, 131: 1124–1131.

  13. Čanađija, M., Barretta, R., Marotti de Sciarra, F. A gradient elasticity model of Bernoulli-Euler nanobeams in nonisothermal environments. European Journal of Mechanics A/Solids, 2015, 55: 243–255.

  14. Zand MM, Ahmadian MT. Dynamic pull-in instability of lectrostatically actuated beams incorporating Casimir and van der Waals forces. Proc. IMechE Part C: J. Mechanical Engineering Science, 224: 2037–47.

  15. Sadeghian, H., Rezazadeh, G., Osterberg, P.M. Application of the Generalized Differential Quadrature Method to the Study of Pull-In Phenomena of MEMS Switches. Journal of microelectromechanical system, 2015, 16(6): 1334–1340.

  16. Hsu, M.H. Electromechanical analysis of electrostatic nano-actuators using the differential quadrature method. Commun. Numer. Meth. Engng, 2008, 24: 1445–1457.

  17. Sedighi, H.M., Shirazi, K.H. Vibrations of micro-beams actuated by an electric field via parameter expansion method. Acta Astronautica, 2013, 85: 19–24.

  18. Zare, J. Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage. Journal of Applied and Computational Mechanics, 2015, 1(1): 17–25.

  19. Sedighi, H. M. Daneshmand, F. Yaghootian, A. Application of Iteration Perturbation Method in studying dynamic pull-in instability of micro-beams. Latin American Journal of Solids and Structures, 2014, 11: 1078–1089.

  20. Ale Ali, N., Karami Mohammadi, A. Effect of thermoelastic damping in nonlinear beam model of MEMS resonators by differential quadrature method. Journal of Applied and Computational Mechanics, 2015, 1(3): 112–121.

  21. Edalatzadeh, M.S., Alasty, A. Boundary exponential stabilization of non-classical micro/nano beams subjected to nonlinear distributed forces. Applied Mathematical Modelling, 2016, 40(3): 2223–2241.

  22. Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Material Journal, 1994, 42(2): 475–487.

  23. Stolken JS, Evans AG. Micro bend test method for measuring the plasticity length scale. Acta Materialia Journal, 1998, 46(14): 5109–5115.

  24. Eringen, A.C. Nonlocal polar elastic continua, Int. J. Eng. Sci., 1982, 10: 1–16.

  25. Lam, D. C. C., Yang, F., Chong, A. C. M., Wang, J., Tong, P. Experiments and theory in strain gradient elasticity.Journal of the Mechanics and Physics of Solids, 2003, 51, 1477–1508.

  26. Toupin RA. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal, 1962, 11(1):385–414.

  27. Patti, A., Barretta, R., Marotti de Sciarra, F., Mensitieri G., Menna C., Russo P. Flexural properties of multi-wall carbon nanotube/polypropylene composites: Experimental investigation and nonlocal modeling. Composite Structures, 2015, 131: 282–289.

  28. Barretta R., Marotti de Sciarra F. Analogies between nonlocal and local Bernoulli-Euler nanobeams. Archive of Applied Mechanics, 2015, 85(1): 89–99.

  29. Edalatzadeh, M.S., Vatankhah, R., Alasty, A. Suppression of Dynamic Pull-in Instability in Electrostatically Actuated Strain Gradient Beams, Proceeding of the 2nd ISI/ISM International Conference on Robotics and Mechatronics, October 15–17, 2014, Tehran, Iran.

  30. Shojaeian, M., Tadi Beni, Y., Ataei, H. Electromechanical Buckling of Functionally Graded Electrostatic Nanobridges Using Strain Gradient Theory, Acta Astronautica, 2016, doi: 10.1016/j.actaastro.2015.09.015.

  31. Tadi Beni, Y., Mehralian, F., Zeighampour, H. The modified couple stress functionally graded cylindrical thin shell formulation, Mechanics of Advanced Materials and Structures, 2016, 23: 791–801.

  32. Mojahedi, M., Rahaeifard, M., Static Deflection and Pull-In Instability of the Electrostatically Actuated Bilayer Microcantilever Beams, International Journal of Applied Mechanics, 2015, 7(6): 1550090.

  33. Molaei M, Ahmadian MT, Taati E. Effect of thermal wave propagation on thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using analytical modeling. Composites: Part B, 2014, 60:413–422.

  34. MolaeiM, TaatiE, Basirat H. Optimization of functionally graded materials in the slab symmetrically surface heated using transient analytical solution. Journal of Thermal Stresses, 2014, 37: 137–159.

  35. Sedighi, H. M., Koochi, A., Abadyan, M.R. Modeling the size dependent static and dynamic pull-in stability of cantilever nano-actuator based on the strain gradient theory, International Journal of Applied Mechanics, 2014, 6(5).

  36. Sedighi, H. M. Daneshmand, F. Abadyan, M.R. Modified model for instability analysis of symmetric FGM double-sided nano-bridge: Corrections due to surface layer, finite conductivity and size effect. Composite Structures, 2015, 132, 545–557.

  37. Sedighi, H. M., Koochi, A., Daneshmand, F., Abadyan, M.R. Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and rarefied gas flow. International Journal of Non-Linear Mechanics, 2015, 77: 96–106.

  38. Sedighi, H. M., Changizian, M., Noghrehabadi, A. Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory. Latin American Journal of Solids and Structures, 2014, 11: 810–825.

  39. Tadi Beni, Y. Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. Journal of Intelligent Material Systems and Structures, 2016, doi: 10.1177/1045389X15624798.

  40. Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F. An Eringen-like model for Timoshenko nanobeams. Composite Structures, 2016, 139: 104–110.

  41. Karimi, M., Shokrani, M.H., Shahidi, A.R. Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method. Journal of Applied and Computational Mechanics, 2015, 1(3): 122–133.

  42. Sedighi, H.M., Bozorgmehri, A. Nonlinear vibration and adhesion instability of Casimir-induced nonlocal nanowires with the consideration of surface energy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, doi: 10.1007/s40430-016-0530-x.

  43. Karimipour, I., Tadi Beni, Y., Koochi, A., Abadyan, M. Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, doi: 10.1007/s40430-015-0385-6.

  44. Sheikhanzadeh, A., Sedighi, H.M. Static and Dynamic pull-in instability of nano-beams resting on elastic foundation using the Differential Quadrature Element Method, Master Thesis, Najafabad Branch, Islamic Azad Univesity, Najafabad, Iran, 2015.

  45. Reddy, J.N. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci, 2010, 48: 1507–18.

  46. Rezazadeh, G., Fathalilou, M., Morteza Sadeghi. Pull-in Voltage of Electrostatically-Actuated Microbeams in Terms of Lumped Model Pull-in Voltage Using Novel Design Corrective Coefficients, Sens Imaging, 2011, 12: 117–131.

  47. Osterberg, P. Electrostatically actuated microelectromechanical test structures for material property measurement, Ph.D. thesis, MIT, Cambridge, 1995.

  48. Krylov, S. Lyapunov exponents as a criterion for the dynamic pull-in instability of electrostatically actuated microstructures, Int. J. Non-Linear Mech., 2007, 42: 626–642.

  49. Tilmans, H.A., Legtenberg, R., Electrostatically driven vacuum-encapsulated polysilicon resonators. Part II: theory and performance, Sens. Actuat. A, 1994, 45(1): 67–84.

  50. Sedighi, H.M., Daneshmand, F., Abadyan, M. Modeling the effects of material properties on the pull-in instability of nonlocal functionally graded nano-actuators, Z. Angew. Math. Mech. 2016, 96(3): 385–400.

  51. Kuang, J.H., Chen, C.J. Dynamic characteristics of shaped micro-actuators solved using the differential quadrature method. J. Micromech. Microeng., 2004, 14(4): 647–655.

  52. Moghimi Zand, M., Ahmadian, M.T. Application of homotopy analysis method in studying dynamic pull-in instability of Microsystems, Mechanics Research Communications, 2009, 36: 851–858

  53. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H. The pull-in behavior of electrostatically actuated bistable microstructures, Journal of Micromechanics and Microengineering, 2008, 18, 055026 (20 pp)

  54. Das, K., Batra, R.C. Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems, Journal of Micromechanics and Microengineering, 2009, 19, 035008 (19 pp).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HAMID M Sedighi.

Appendix A

Appendix A

$$\beta_{i} = \frac{{\beta^{\prime}_{i} }}{{\left( {1 - \left( {e_{0} a} \right)^{ * 2} \int\limits_{0}^{1} {\phi \phi^{\prime\prime}d\xi } } \right)}},\,\,\,\,i = 0,1,2,3,4$$

For van der Waals intermolecular force:

$$\begin{aligned} \beta^{\prime}_{0} = - \left( {(V_{0}^{ * } )^{2} \left( {1 + \hat{f}^{ * } } \right) + \varLambda^{ * } } \right)\int\limits_{0}^{1} {\phi d\xi } \hfill \\ \beta^{\prime}_{1} = \lambda^{4} - \left( {(V_{0}^{ * } )^{2} \left( {2 + \hat{f}^{ * } } \right) + 3\varLambda^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{2} - \left( {e_{0} a} \right)^{ * 2} \phi \phi^{\prime\prime}} \right)d\xi } - f_{i} \int\limits_{0}^{1} {\left( {\phi \phi^{\prime\prime} - \left( {e_{0} a} \right)^{ * 2} \phi \phi^{\left( 4 \right)} } \right)d\xi } \hfill \\ \beta^{\prime}_{2} = - \left( {(V_{0}^{ * } )^{2} \left( {3 + \hat{f}^{ * } } \right) + 6\varLambda^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{3} - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{2} } \right)^{\prime \prime } } \right)d\xi } \hfill \\ \beta^{\prime}_{3} = - \left( {(V_{0}^{ * } )^{2} \left( {4 + \hat{f}^{ * } } \right) + 10\varLambda^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{4} - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{3} } \right)^{\prime \prime } } \right)d\xi } \hfill \\ - \alpha \left[ {\left( {\int\limits_{0}^{1} {\left( {\phi \phi^{\prime\prime}\left[ {\int\limits_{0}^{1} {\phi^{\prime 2} d\xi } } \right] - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{\prime\prime}\left[ {\int\limits_{0}^{1} {\phi^{\prime 2} d\xi } } \right]} \right)^{\prime \prime } } \right)d\xi } } \right)} \right] \hfill \\ \beta^{\prime}_{4} = - \left( {(V_{0}^{ * } )^{2} \left( {5 + \hat{f}^{ * } } \right) + 15\varLambda^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{5} - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{4} } \right)^{\prime \prime } } \right)d\xi } \hfill \\ \end{aligned}$$
(A-1)

For Casimir intermolecular force:

$$\begin{aligned} \beta^{\prime}_{0} = - \left( {(V_{0}^{ * } )^{2} \left( {1 + \hat{f}^{ * } } \right) + (\hbar c)^{ * } } \right)\int\limits_{0}^{1} {\phi d\xi } \hfill \\ \beta^{\prime}_{1} = \lambda^{4} - \left( {(V_{0}^{ * } )^{2} \left( {2 + \hat{f}^{ * } } \right) + 4(\hbar c)^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{2} - \left( {e_{0} a} \right)^{*2} \phi \phi^{\prime\prime}} \right)d\xi } - f_{i} \int\limits_{0}^{1} {\left( {\phi \phi^{\prime\prime} - \left( {e_{0} a} \right)^{*2} \phi \phi^{\left( 4 \right)} } \right)d\xi } \hfill \\ \beta^{\prime}_{2} = - \left( {(V_{0}^{ * } )^{2} \left( {3 + \hat{f}^{ * } } \right) + 10(\hbar c)^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{3} - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{2} } \right)^{\prime \prime } } \right)d\xi } \hfill \\ \beta^{\prime}_{3} = - \left( {(V_{0}^{ * } )^{2} \left( {4 + \hat{f}^{ * } } \right) + 20(\hbar c)^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{4} - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{3} } \right)^{\prime \prime } } \right)d\xi } \hfill \\ - \alpha \left[ {\left( {\int\limits_{0}^{1} {\left( {\phi \phi^{\prime\prime}\left[ {\int\limits_{0}^{1} {\phi^{\prime 2} d\xi } } \right] - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{\prime\prime}\left[ {\int\limits_{0}^{1} {\phi^{\prime 2} d\xi } } \right]} \right)^{\prime \prime } } \right)d\xi } } \right)} \right] \hfill \\ \beta^{\prime}_{4} = - \left( {(V_{0}^{ * } )^{2} \left( {5 + \hat{f}^{ * } } \right) + 35(\hbar c)^{ * } } \right)\int\limits_{0}^{1} {\left( {\phi^{5} - \left( {e_{0} a} \right)^{ * 2} \phi \left( {\phi^{4} } \right)^{\prime \prime } } \right)d\xi } \hfill \\ \end{aligned}$$
(A-2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, H.M., Sheikhanzadeh, A. Static and Dynamic Pull-In Instability of Nano-Beams Resting on Elastic Foundation Based on the Nonlocal Elasticity Theory. Chin. J. Mech. Eng. 30, 385–397 (2017). https://doi.org/10.1007/s10033-017-0079-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10033-017-0079-3

Keywords

Navigation