Skip to main content
Log in

Automatic room information retrieval and classification from floor plan using linear regression model

  • Original Paper
  • Published:
International Journal on Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript


The automatic creation of a repository of the building’s floor plan helps a lot to the architects to reuse them. The basic approach is to extract and recognize texts, symbols or graphics to retrieve the information of the floor plan from the images. This paper proposes a floor plan information retrieval algorithm. The proposed algorithm is based on shape extraction and room identification.\(\alpha \)-shape is used for finding an accurate shape. From the detected shapes, actual areas of rooms are calculated. Later, a regression model-based binary room classification model is proposed to classify them into room-type, i.e., bedroom, drawing room, kitchen, and non-room-type, i.e., parking porch, bathroom, study room and prayer room. The proposed model is tested on the CVC-FP dataset with an average room detection accuracy of 85.71% and room recognition accuracy of 88%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  1. Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Improved automatic analysis of architectural floor plans. In: 2011 International Conference on Document Analysis and Recognition, pp. 864–869. IEEE (2011)

  2. Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Automatic room detection and room labeling from architectural floor plans. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 339–343. IEEE (2012)

  3. Ahmed, S., Weber, M., Liwicki, M., Dengel, A.: Text/graphics segmentation in architectural floor plans. In: 2011 International Conference on Document Analysis and Recognition, pp. 734–738. IEEE (2011)

  4. Al-Tamimi, M.S.H., Sulong, G., Shuaib, I.L.: Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images. Magn. Resonance Imaging 33(6), 787–803 (2015)

    Article  Google Scholar 

  5. Belkasim, S.O., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit. 24(12), 1117–1138 (1991)

    Article  Google Scholar 

  6. Bunke, H.: Graph matching: theoretical foundations, algorithms, and applications. Proc. Vis. Interface 2000, 82–88 (2000)

    Google Scholar 

  7. Delalandre, M., Valveny, E., Pridmore, T., Karatzas, D.: Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems. Int. J. Doc. Anal. Recognit. (IJDAR) 13(3), 187–207 (2010)

    Article  Google Scholar 

  8. de las Heras, L.P., Ahmed, S., Liwicki, M., Valveny, E., Sánchez, G.: Statistical segmentation and structural recognition for floor plan interpretation. Int. J. Doc. Anal. Recognit. (IJDAR) 17(3), 221–237 (2014)

    Article  Google Scholar 

  9. de las Heras, L.P., Terrades, O.R., Robles, S., Sánchez, G.: A new database for structural floor plan analysis and its groundtruthing tool. Int. J. Doc. Anal. Recognit. (IJDAR) 18(1), 15–30 (2015)

    Article  Google Scholar 

  10. Dutta, A., Lladós, J., Pal, U.: A symbol spotting approach in graphical documents by hashing serialized graphs. Pattern Recognit. 46(3), 752–768 (2013)

    Article  Google Scholar 

  11. Ganapathy, H., Ramu, P., Muthuganapathy, R.: Alpha shape based design space decomposition for island failure regions in reliability based design. Struct. Multidiscip. Optim. 52(1), 121–136 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hoang, T.V., Tabbone, S.: Text extraction from graphical document images using sparse representation. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 143–150. ACM (2010)

  13. Jang, H., Yu, K., Yang, J.: Indoor reconstruction from floorplan images with a deep learning approach. ISPRS Int. J. Geo-Inf. 9(2), 65 (2020)

    Article  Google Scholar 

  14. Kalervo, A., Ylioinas, J., Häikiö, M., Karhu, A., Kannala, J.: Cubicasa5k: a dataset and an improved multi-task model for floorplan image analysis. In: Scandinavian Conference on Image Analysis, pp. 28–40. Springer (2019)

  15. Katsuri, R., Bow, S.T., El-Masri, W., Shah, J., Gattiker, J.R., Mokate, U.B.: A system for interpretation of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 10, 978–992 (1990)

    Google Scholar 

  16. Lladós, J., Martí, E., Villanueva, J.J.: Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1137–1143 (2001)

    Article  Google Scholar 

  17. Macé, S., Locteau, H., Valveny, E., Tabbone, S.: A system to detect rooms in architectural floor plan images. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 167–174. ACM (2010)

  18. Qiu, H., Hancock, E.R.: Graph matching and clustering using spectral partitions. Pattern Recognit. 39(1), 22–34 (2006)

    Article  Google Scholar 

  19. Ravagli, J., Ziran, Z., Marinai, S.: Text recognition and classification in floor plan images. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 1, pp. 1–6. IEEE (2019)

  20. Rusiñol, M., Lladós, J.: Symbol Spotting in Digital Libraries. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  21. Rusiñol, M., Lladós, J., Sánchez, G.: Symbol spotting in vectorized technical drawings through a lookup table of region strings. Pattern Anal. Appl. 13(3), 321–331 (2010)

    Article  MathSciNet  Google Scholar 

  22. Santosh, K.: Document Image Analysis: Current Trends and Challenges in Graphics Recognition. Springer, Berlin (2018)

    Book  Google Scholar 

  23. Santosh, K., Lamiroy, B., Wendling, L.: Symbol recognition using spatial relations. Pattern Recognit. Lett. 33(3), 331–341 (2012)

    Article  Google Scholar 

  24. Santosh, K., Lamiroy, B., Wendling, L.: Dtw-radon-based shape descriptor for pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 27(03), 1350008 (2013)

    Article  MathSciNet  Google Scholar 

  25. Santosh, K., Lamiroy, B., Wendling, L.: Integrating vocabulary clustering with spatial relations for symbol recognition. Int. J. Doc. Anal. Recognit. (IJDAR) 17(1), 61–78 (2014)

    Article  Google Scholar 

  26. Santosh, K., Wendling, L.: Graphical symbol recognition. In: Webster, J.G. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–22. Wiley (1999)

  27. Santosh, K., Wendling, L., Lamiroy, B.: Bor: bag-of-relations for symbol retrieval. Int. J. Pattern Recognit. Artif. Intell. 28(06), 1450017 (2014)

    Article  Google Scholar 

  28. Sharma, D., Chattopadhyay, C., Harit, G.: A unified framework for semantic matching of architectural floorplans. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2422–2427. IEEE (2016)

  29. Sharma, D., Gupta, N., Chattopadhyay, C., Mehta, S.: A novel feature transform framework using deep neural network for multimodal floor plan retrieval. Int. J. Doc. Anal. Recognit. (IJDAR) 22(4), 417–429 (2019)

    Article  Google Scholar 

  30. Social Science Statistics (2018). Accessed 6 June 2020

  31. Tabbone, S., Wendling, L., Tombre, K.: Matching of graphical symbols in line-drawing images using angular signature information. Doc. Anal. Recognit. 6(2), 115–125 (2003)

    Article  Google Scholar 

  32. Takada, Y., Inoue, N., Yamasaki, T., Aizawa, K.: Similar floor plan retrieval featuring multi-task learning of layout type classification and room presence prediction. In: 2018 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6. IEEE (2018)

  33. Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., Dosch, P.: Text/graphics separation revisited. In: International Workshop on Document Analysis Systems, pp. 200–211. Springer (2002)

  34. Wessel, R., Blümel, I., Klein, R.: The room connectivity graph: shape retrieval in the architectural domain. In: The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS, University of West Bohemia Plzen, Czech Republic, February 4–7, pp.73–80 (2008)

  35. Yan, L., Wenyin, L.: Engineering drawings recognition using a case-based approach. In: Proceedings of Seventh International Conference on Document Analysis and Recognition, 2003, pp. 190–194. IEEE (2003)

  36. Zeng, Z., Li, X., Yu, Y.K., Fu, C.W.: Deep floor plan recognition using a multi-task network with room-boundary-guided attention. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9096–9104 (2019)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hiren K. Mewada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mewada, H.K., Patel, A.V., Chaudhari, J. et al. Automatic room information retrieval and classification from floor plan using linear regression model. IJDAR 23, 253–266 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: