Advertisement

Online signature verification based on string edit distance

  • Kaspar RiesenEmail author
  • Roman Schmidt
Original Paper
  • 99 Downloads

Abstract

Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.

Keywords

User authentication Signature verification String matching String edit distance 

Notes

Acknowledgements

We would like to thank Prof. Dr. Andreas Fischer for his valuable comments and help on the DTW reference system.

References

  1. 1.
    Ansari, A., Hanmandlu, M., Kour, J., Singh, A.: Online signature verification using segment-level fuzzy modelling. IET Biom. 3(3), 113–127 (2014)CrossRefGoogle Scholar
  2. 2.
    Bansal, M., Hanmandlu, M., Kumar, P.: Iris based authentication using local principal independent components. Optik-Int. J. Light Electron Opt. 127(11), 4808–4814 (2016)CrossRefGoogle Scholar
  3. 3.
    Fierrez, J., Ortega-Garcia, J., Ramos, D., Gonzales-Rodriguez, J.: Hmm-based on-line signature verification: feature extraction and signature modeling. Pattern Recognit. Lett. 28(16), 2325–2334 (2007)CrossRefGoogle Scholar
  4. 4.
    Guru, D., Prakash, H.: Online signature verification and recognition: an approach based on symbolic representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1059—1073 (2009)Google Scholar
  5. 5.
    Ibrahim, M., Kyan, M., Guang, L.: On-line signature verification using global features. In: 2009 Canadian Conference on Electrical and Computer Engineering (2009)Google Scholar
  6. 6.
    Impedovo, D., Pirlo, G.: Automatic signature verification: the state of the art’. IEEE Trans. Syst. Man Cybern. 38(5), 609–635 (2008)CrossRefGoogle Scholar
  7. 7.
    Kholmatov, A., Yanikoglu, B.: Identity authentication using improved online signature verification method. Pattern Recognit. Lett. 26(15), 1400–2408 (2005)CrossRefGoogle Scholar
  8. 8.
    Kholmatov, A., Yanikoglu, B.: SUSIG: an on-line signature database, associated protocols and benchmark results. Pattern Anal. Appl. 12(3), 227–236 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  10. 10.
    Liwicki, M., Blumenstein, M., van den Heuvel, E., Berger, C., Stoel, R.D., Found, B., Chen, X., Malik, M.I.: Sigcomp11: Signature verification competition for on- and offline skilled forgeries. In: Proc. 11th Int. Conference on Document Analysis and Recognition (2011)Google Scholar
  11. 11.
    Martinez-Diaz, M., Fierrez, J., Krish, R., Galbally, J.: Mobile signature verification: feature robustness and performance comparison. IET Biom. 3(4), 267–277 (2014)CrossRefGoogle Scholar
  12. 12.
    Mehdi, S., Arakala, A., Davis, S., Horadam, K.: Retina verification system based on biometric graph matching. IEEE Trans. Image Process. 22(9), 3625–3635 (2013)CrossRefGoogle Scholar
  13. 13.
    Mehdi Lajevardi, S., Arakala, A., Davis, S., Horadam, K.: Hand vein authentication using biometric graph matching. IET Biom. 3(4), 302–313 (2014)CrossRefGoogle Scholar
  14. 14.
    Nanni, L., Lumini, A.: Ensemble of parzen window classifiers for on-line signature verification. Neurocomputing 68, 217–224 (2005)CrossRefGoogle Scholar
  15. 15.
    O’Gorman, L.: Comparing passwords, tokens, and biometrics for user authentication. Proc. IEEE 91(12), 2021–2040 (2003)CrossRefGoogle Scholar
  16. 16.
    Oka, M., Kato, K., Xu, Y., Liang, L., Wen, F.: Scribble-a-secret: Similarity-based password authentication using sketches. In: In Proc. of the 19th International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  17. 17.
    Ortega-Garcia J. andFierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez, M., Espinosa, V., Satue A. andHernaez, I., Igarza, J.J., Vivaracho, C., Escudero, D., Moro, Q.I.: Mcyt baseline corpus: A bimodal biometric database. IEEE Proc. Vis. Image Signal Process. Spec. Issue Biom. Internet 150(6), 395–401 (2003)Google Scholar
  18. 18.
    Plamondon, R., Pirlo, G., Impedovo, D.: On-line Signature Verification, chap. 27, pp. 917–947. Springer (2014)Google Scholar
  19. 19.
    Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans. PAMI 22(1), 63–84 (2000)CrossRefGoogle Scholar
  20. 20.
    Riesen, K., Hanne, T., Schmidt, R.: Sketch-based user authentication with a novel string edit distance model. IEEE Trans. Syst. Man Cybern. Syst. PP(99) (2016)Google Scholar
  21. 21.
    Roth, J., Liu, X., Metaxas, D.: On continuous user authentication via typing behavior. IEEE Trans. Image Process. 23(10), 4611–4624 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sae-Bae, N., Memon, N.: Online signature verification on mobile devices. IEEE Trans. Inf. Forensics Secur. 9(6), 933—947 (2014)Google Scholar
  23. 23.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)Google Scholar
  24. 24.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)CrossRefzbMATHGoogle Scholar
  25. 25.
    Stajano, F.: No more passwords. In: In Proc. Security Protocols Workshop, pp. 49–81 (2011)Google Scholar
  26. 26.
    Ukkonen, E.: Algorithms for approximate string matching. Inf. Control 64(1–3), 100–118 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vivaracho-Pascual, C., Faundez-Zanuy, M., Pascual, J.M.: An efficient low cost approach for on-line signature recognition based on length normalization and fractional distances. Pattern Recognit. 42(1), 183–193 (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wong, W., Teoh, A., Kho, Y., Wong, M.: Kernel PCA enabled bit-string representation for minutiae-based cancellable fingerprint template. Pattern Recognit. 51, 197–208 (2016)CrossRefGoogle Scholar
  29. 29.
    Yanikoglu, B., Kholmatov, A.: Online signature verification using fourier descriptors. Eur. J. Adv. Signal Process. (1–14) (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Information SystemsUniversity of Applied Sciences and Arts Northwestern SwitzerlandOltenSwitzerland
  2. 2.Intelligent Insights GmbHLiebefeldSwitzerland

Personalised recommendations