An improved discriminative region selection methodology for online handwriting recognition

  • Subhasis MandalEmail author
  • S. R. Mahadeva Prasanna
  • Suresh Sundaram
Original Paper


The task of online handwriting recognition (HR) becomes often challenging due to the presence of confusing characters which are separable by a small region. To address this problem, we propose a “discriminative region (DR) selection” technique which highlights the discriminative region that distinguishes one character from another similar character. The existing DR selection approach for online handwriting often finds spurious DR when the intra-class shape variations become higher than the distinction between DRs of the two characters. The proposed technique which is an improved version of the existing approach can minimize the effect of high intra-class variations and results in robust DR selection. In addition, we propose an online HR system enabling DR-based processing in a single-stage classification framework. The use of hidden Markov model and support vector machine classifiers is explored to develop the HR system. The efficacy of the proposals is shown for character and word recognition tasks and evaluated on three databases: the locally collected Assamese character database, UNIPEN English character database and UNIPEN ICROW-03 word database. The recognition results are promising over the reported works.


Character Word Assamese UNIPEN HMM SVM 


  1. 1.
    Sueiras, J., Ruiz, V., Sanchez, A., Velez, J.F.: Offline continuous handwriting recognition using sequence to sequence neural networks. Neurocomputing 289, 119–128 (2018)CrossRefGoogle Scholar
  2. 2.
    Chherawala, Y., Roy, P.P., Cheriet, M.: Combination of context-dependent bidirectional long short-term memory classifiers for robust offline handwriting recognition. Pattern Recognit. Lett. 90, 58–64 (2017)CrossRefGoogle Scholar
  3. 3.
    Singh, S., Sharma, A., Chhabra, I.: A dominant points-based feature extraction approach to recognize online handwritten strokes. Int. J. Doc. Anal. Recognit. (IJDAR) 20(1), 37–58 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhang, S., Jin, L., Lin, L.: Discovering similar Chinese characters in online handwriting with deep convolutional neural networks. Int. J. Doc. Anal. Recognit. 19(3), 237–252 (2016)CrossRefGoogle Scholar
  5. 5.
    Tagougui, N., Kherallah, M., Alimi, A.M.: Online Arabic handwriting recognition: a survey. Int. J. Doc. Anal. Recognit. 16(3), 209–226 (2013)CrossRefGoogle Scholar
  6. 6.
    Choudhury, H., Prasanna, S.R.M.: Handwriting recognition using sinusoidal model parameters. Pattern Recognit. Lett. (2018).
  7. 7.
    Samanta, O., Roy, A., Parui, S.K., Bhattacharya, U.: An HMM framework based on spherical-linear features for online cursive handwriting recognition. Inf. Sci. 441, 133–151 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bharath, A., Madhvanath, S.: HMM-based lexicon-driven and lexicon-free word recognition for online handwritten Indic scripts. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 670–682 (2012)CrossRefGoogle Scholar
  9. 9.
    Keysers, D., Deselaers, T., Rowley, H.A., Wang, L.L., Carbune, V.: Multi-language online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1180–1194 (2017)CrossRefGoogle Scholar
  10. 10.
    Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009)CrossRefGoogle Scholar
  11. 11.
    Vuurpijl, L., Schomaker, L., Erp, M.: Architectures for detecting and solving conflicts: two-stage classification and support vector classifiers. Doc. Anal. Recognit. 5(4), 213–223 (2003)CrossRefGoogle Scholar
  12. 12.
    Bellili, A., Gilloux, M., Gallinari, P.: An MLP-SVM combination architecture for offline handwritten digit recognition. Int. J. Doc. Analy. Recognit. 5(4), 244–252 (2003)CrossRefGoogle Scholar
  13. 13.
    Milgram, J., Sabourin, R., Cheriet, M.: Two-stage classification system combining model-based and discriminative approaches. In: Proceedings of International Conference on Pattern Recognition, Vol. 1, pp. 152–155 (2004)Google Scholar
  14. 14.
    Prevost, L., Oudot, L., Moises, A., Michel-Sendis, C., Milgram, M.: Hybrid generative/discriminative classifier for unconstrained character recognition. Pattern Recognit. Lett. 26(12), 1840–1848 (2005)CrossRefGoogle Scholar
  15. 15.
    Bhowmik, T., Ghanty, P., Roy, A., Parui, S.: SVM-based hierarchical architectures for handwritten Bangla character recognition. Int. J. Doc. Anal. Recognit. 12(2), 97–108 (2009)CrossRefGoogle Scholar
  16. 16.
    Zanchettin, C., Bezerra, B., Azevedo, W.: A KNN-SVM hybrid model for cursive handwriting recognition. In: Proceedings of International Joint Conference on Neural Networks, pp. 1–8 (2012)Google Scholar
  17. 17.
    Rahman, A.F.R., Fairhurst, M.C.: Selective partition algorithm for finding regions of maximum pairwise dissimilarity among statistical class models. Pattern Recognit. Lett. 18(7), 605–611 (1997)CrossRefGoogle Scholar
  18. 18.
    Xu, B., Huang, K., Liu, C.L.: Similar handwritten Chinese characters recognition by critical region selection based on average symmetric uncertainty. In: Proceedings of International Conference on Frontiers in Handwriting Recognition, pp. 527–532. IEEE (2010)Google Scholar
  19. 19.
    Leung, K., Leung, C.H.: Recognition of handwritten Chinese characters by critical region analysis. Pattern Recognit. 43(3), 949–961 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sundaram, S., Ramakrishnan, A.G.: Performance enhancement of online handwritten Tamil symbol recognition with reevaluation techniques. Pattern Anal. Appl. 17(3), 587–609 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ghosh, S., Bora, P.K., Das, S., Chaudhuri, B.B.: Development of an Assamese OCR using Bangla OCR. In: Proceedings of the Workshop on Document Analysis and Recognition, pp. 68–73. ACM (2012)Google Scholar
  22. 22.
    Choudhury, H., Mandal, S., Devnath, S., Prasanna, S.R.M., Sundaram, S.: Comparison of Assamese character recognizer using stroke level and character level engines. In: Proceedings of National Conference on Communications, pp. 1–6 (2015)Google Scholar
  23. 23.
    Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., Janet, S.: UNIPEN project of online data exchange and recognizer benchmarks. In: Proceedings of International Conference on Pattern Recognition, pp. 29–33 (1994)Google Scholar
  24. 24.
    Ratzlaff, E.H.: Methods, reports and survey for the comparison of diverse isolated character recognition results on the UNIPEN database. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 623–628 (2003)Google Scholar
  25. 25.
    Schomaker, L.: The UNIPEN-ICROW-03 benchmark set. icdar-03-competition/_README. Accessed 04 Aug 2017 (2003)
  26. 26.
    Liwicki, M., Bunke, H.: HMM-based online recognition of handwritten whiteboard notes. In: Proceedings of International Workshop on Frontiers in Handwriting Recognition, pp. 595–599 (2006)Google Scholar
  27. 27.
    Jaeger, S., Manke, S., Reichert, J., Waibel, A.: Online handwriting recognition: the NPen++ recognizer. Int. J. Doc. Anal. Recognit. 3(3), 169–180 (2001)CrossRefGoogle Scholar
  28. 28.
    Shashikiran, K., Prasad, K., Kunwar, R., Ramakrishnan, A.: Comparison of HMM and SDTW for Tamil handwritten character recognition. In: Proceedings of International Conference on Signal Processing and Communications, pp. 1–4 (2010)Google Scholar
  29. 29.
    Srihari, S.N., Cha, S.H., Lee, S.: Establishing handwriting individuality using pattern recognition techniques. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 1195–1204 (2001)Google Scholar
  30. 30.
    Logan, B., Salomon, A.: A music similarity function based on signal analysis. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 745–748 (2001)Google Scholar
  31. 31.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)zbMATHGoogle Scholar
  32. 32.
    Kumara, K., Agrawal, R., Bhattacharyya, C.: A large margin approach for writer independent online handwriting classification. Pattern Recognit. Lett. 29(7), 933–937 (2008)CrossRefGoogle Scholar
  33. 33.
    Jayech, K., Mahjoub, M.A., Amara, N.E.B.: Synchronous multi-stream hidden markov model for offline Arabic handwriting recognition without explicit segmentation. Neurocomputing 214, 958–971 (2016)CrossRefGoogle Scholar
  34. 34.
    Mandal, S., Prasanna, S.R.M., Sundaram, S.: Curvature point based HMM state prediction for online handwritten Assamese strokes recognition. In: Proceedings of National Conference on Communications, pp. 1–6 (2015)Google Scholar
  35. 35.
    Pradhan, G., Prasanna, S.R.M.: Speaker verification by vowel and nonvowel like segmentation. IEEE Trans. Audio Speech Lang. Process. 21(4), 854–867 (2013)CrossRefGoogle Scholar
  36. 36.
    Bahlmann, C., Burkhardt, H.: The writer independent online handwriting recognition system frog on hand and cluster generative statistical dynamic time warping. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 299–310 (2004)CrossRefGoogle Scholar
  37. 37.
    Google: Google books N-grams. Accessed 04 Aug 2017 (2012)
  38. 38.
    Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  39. 39.
    Prum, S., Visani, M., Fischer, A., Ogier, J.M.: A discriminative approach to online handwriting recognition using bi-character models. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 364–368 (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Electrical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations